Abstract
Pseudorandom correlation functions (PCF), introduced in the work of (Boyle et al., FOCS 2020), allow two parties to locally generate, from short correlated keys, a near-unbounded amount of pseudorandom samples from a target correlation. PCF is an extremely appealing primitive in secure computation, where they allow to confine all preprocessing phases of all future computations two parties could want to execute to a single short interaction with low communication and computation, followed solely by offline computations. Beyond introducing the notion, Boyle et al. gave a candidate construction, using a new variable-density variant of the learning parity with noise (LPN) assumption. Then, to provide support for this new assumption, the authors showed that it provably resists a large class of linear attacks, which captures in particular all known attacks on LPN.
In this work, we revisit the analysis of the VDLPN assumption. We make two key contributions:
-
First, we observe that the analysis of Boyle et al. is purely asymptotic: they do not lead to any concrete and efficient PCF instantiation within the bounds that offer security guarantees. To improve this state of affairs, we combine a new variant of a VDLPN assumption with an entirely new, much tighter security analysis, which we further tighten using extensive computer simulations to optimize parameters. This way, we manage to obtain for the first time a set of provable usable parameters (under a simple combinatorial conjecture which is easy to verify experimentally), leading to a concretely efficient PCF resisting all linear tests.
-
Second, we identify a flaw in the security analysis of Boyle et al., which invalidates their proof that VDLPN resists linear attacks. Using several new non-trivial arguments, we repair the proof and fully demonstrate that VDLPN resists linear attack; our new analysis is more involved than the original (flawed) analysis.
Our parameters set leads to PCFs with keys around 3 MB allowing \(\sim 500\) evaluations per second on one core of a standard laptop for 110 bits of security; these numbers can be improved to 350 kB keys and \(\sim 3950\) evaluations/s using a more aggressive all-prefix variant. All numbers are quite tight: only within a factor 3 of the best bounds one could heuristically hope for.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
E.g. A laptop equipped with an Intel i5 2540M processor can compute an RSA decryption in 1.4ms of amortized time.
- 2.
The choice of 80 bits of security is more conservative than it appears: it means that an adversary will have to compute \(2^{80}\) inner products with a length-\(2^{30}\) vector to detect a \(2^{-80}\) bias in the output. In terms of bit-security, this corresponds to at least 110 bits of security.
- 3.
E.g. if Z is 0 with probability 1/2, and 10 else, then \(\mathbb {E} [Z] = 5 \in [4,5]\), but \(\mathbb {E} [|Z-5|] = 5 > 5-4\).
- 4.
The improvement comes from a better estimation of the \(\beta \) parameter on one hand, but also from the better inherent quality of the new proof. In fact, we can consider the same calculation as before, but with \(l= 2^7\) and \(\beta = 0.44\). This is a non-computer-optimized, provable value of \(\beta \) using \(i^* = 7\). With this value, we get \(w \approx 13 000\), which is already a big gain from the previous method: this is already several orders of magnitudes better than the previous method, though still not practical.
References
Al Jabri, A.A.: A statistical decoding algorithm for general linear block codes (2001)
Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. Second Series 19(3), 357–367 (1967)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: Optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D., (eds.) ACM CCS 2017, pp. 2105–2122. ACM Press (October/November 2017)
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J., (eds.) ACM CCS 2019, pp. 291–308. ACM Press (November 2019)
Boyle, E., et al.: Efficient pseudorandom correlation generators: silent ot extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseudorandom functions from variable-density LPN. In: 61st FOCS, pages 1069–1080. IEEE Computer Society Press (November 2020)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X., (eds.) ACM CCS 2018, pp. 896–912. ACM Press (October 2018)
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., (eds.) ACM CCS 2016, pp. 1292–1303. ACM Press (October 2016)
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1 + 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press (May 2000)
Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_42
Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_13
Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2
Bogos, S., Tramer, F., Vaudenay, S.: On solving lpn using bkw and variants (2016)
Bogos, S., Vaudenay, S.: Optimization of \(\sf LPN\) solving algorithms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 703–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_26
Boneh, D., Waters, B.: constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC Codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17
Debris-Alazard, T., Tillich, J.-P.: Statistical decoding (2017)
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_17
Fossorier, M.P.C., Kobara, K., Imai, H.: Modeling bit flipping decoding based on nonorthogonal check sums with application to iterative decoding attack of mceliece cryptosystem (2006)
Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_6
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. J. Cryptol. 33(1), 1–33 (2020)
Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive, Report 2011/377 (2011). https://eprint.iacr.org/2011/377
Kamath, A., Motwani, R., Palem, K.V., Spirakis, P.G.: Tail bounds for occupancy and the satisfiability threshold conjecture. In: 35th FOCS, pp. 592–603. IEEE Computer Society Press (November 1994)
Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M., (eds.) ACM CCS 2013, pp. 669–684. ACM Press (November 2013)
Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_24
Lyubashevsky, V.: The parity problem in the presence of noise, decoding random linear codes, and the subset sum problem (2005)
McDiarmid. C.: On the method of bounded differences. In: Simons, J., (ed.)"Survey in Combinatorics," London Mathematical Society Lecture Notes, vol. 141 (1989)
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6
May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9
Münch, J.-P., Schneider, T., Yalame, H.: Vasa: Vector aes instructions for security applications. In: Annual Computer Security Applications Conference, pp. 131–145 (2021)
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24
Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780656_24
Prange, E.: The use of information sets in decoding cyclic codes (1962)
Saarinen, M.-J.O.: Linearization attacks against syndrome based hashes. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 1–9. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77026-8_1
Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE: Improved constructions and implementation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J., (eds.) ACM CCS 2019, pp. 1055–1072. ACM Press (November 2019)
Shpilka, A.: Constructions of low-degree and error-correcting \(\varepsilon \)-biased generators (2009)
Stern, J.: A method for finding codewords of small weight (1988)
Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)
Zichron, L.: Locally computable arithmetic pseudorandom generators (2017)
Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. Part I, volume 9665 of LNCS, pp. 168–195. Springer, Heidelberg (2016)
Acknowledgements
The first author acknowledges the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE), and of the France 2030 ANR Project ANR-22-PECY-003 SecureCompute. The second author was supported by the DIM RFSI grant LICENCED.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Couteau, G., Ducros, C. (2023). Pseudorandom Correlation Functions from Variable-Density LPN, Revisited. In: Boldyreva, A., Kolesnikov, V. (eds) Public-Key Cryptography – PKC 2023. PKC 2023. Lecture Notes in Computer Science, vol 13941. Springer, Cham. https://doi.org/10.1007/978-3-031-31371-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-31371-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31370-7
Online ISBN: 978-3-031-31371-4
eBook Packages: Computer ScienceComputer Science (R0)