Abstract
The problem of removing mixed noise from images is a challenging problem due to their ill-posed nature. In this paper, we propose a Bayesian technique for the removal of mixed Gaussian-Impulse noise from images. The proposed optimization problem is derived from the maximum a posteriori (MAP) estimates of the noise statistics and makes use of a total variation (TV) and a nuclear norm of the Hessian as its two regularization terms. While TV ensures smoothness to the solution, the use of Hessian takes into account detail preservation in the final optimized output. The proposed problem is then solved under the framework of primal-dual algorithms. Experimental evaluation shows that the proposed method can significantly improve the restoration quality of the images, compared to the existing techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aetesam, H., Maji, S.K.: Noise dependent training for deep parallel ensemble denoising in magnetic resonance images. Biomed. Signal Process. Control 66, 102405 (2021). https://doi.org/10.1016/j.bspc.2020.102405. https://www.sciencedirect.com/science/article/pii/S1746809420305115
Aetesam, H., Maji, S.K., Boulanger, J.: A two-phase splitting approach for the removal of gaussian-impulse noise from hyperspectral images. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds.) CVIP 2020. CCIS, vol. 1376, pp. 179–190. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1086-8_16
Aetesam, H., Maji, S.K., Yahia, H.: Bayesian approach in a learning-based hyperspectral image denoising framework. IEEE Access 9, 169335–169347 (2021). https://doi.org/10.1109/ACCESS.2021.3137656
Aetesam, H., Poonam, K., Maji, S.K.: Proximal approach to denoising hyperspectral images under mixed-noise model. IET Image Process. 14(14), 3366–3372 (2020). https://doi.org/10.1049/iet-ipr.2019.1763. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1763
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38
Cai, J.F., Chan, R., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Problems and Imaging 2 (05 2008). https://doi.org/10.3934/ipi.2008.2.187
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2010). https://doi.org/10.1007/s10851-010-0251-1
Condat, L.: A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2012). https://doi.org/10.1007/s10957-012-0245-9
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238
Delon, J., Desolneux, A.: A patch-based approach for removing impulse or mixed gaussian-impulse noise. SIAM J. Imaging Sci. 6, 1140–1174 (2013). https://doi.org/10.1137/120885000
Deng, G., Cahill, L.: An adaptive gaussian filter for noise reduction and edge detection. In: 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, pp. 1615–1619 (1993). https://doi.org/10.1109/NSSMIC.1993.373563
Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality deblocking of compressed color images. In: 2006 14th European Signal Processing Conference, pp. 1–5 (2006)
Guan, J., Lai, R., Xiong, A., Liu, Z., Gu, L.: Fixed pattern noise reduction for infrared images based on cascade residual attention CNN. Neurocomputing 377, 301–313 (2020). https://doi.org/10.1016/j.neucom.2019.10.054. https://www.sciencedirect.com/science/article/pii/S0925231219314341
Huang, T., Dong, W., Xie, X., Shi, G., Bai, X.: Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3186 (2017). https://doi.org/10.1109/TIP.2017.2676466
Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2neighbor: self-supervised denoising from single noisy images. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14776–14785 (2021). https://doi.org/10.1109/CVPR46437.2021.01454
Islam, M.T., Mahbubur Rahman, S., Omair Ahmad, M., Swamy, M.: Mixed gaussian-impulse noise reduction from images using convolutional neural network. Signal Process. Image Commun. 68, 26–41 (2018). https://doi.org/10.1016/j.image.2018.06.016. https://www.sciencedirect.com/science/article/pii/S0923596518300705
Cai, J.F., Chan, R.H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008)
Jiang, J., Yang, J., Cui, Y., Luo, L.: Mixed noise removal by weighted low rank model. Neurocomputing 151, 817–826 (2015). https://doi.org/10.1016/j.neucom.2014.10.017
Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23, 2651–2662 (2014). https://doi.org/10.1109/TIP.2014.2317985
Ko, S.J., Lee, Y.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circ. Syst. 38(9), 984–993 (1991). https://doi.org/10.1109/31.83870
Liu, J., Tai, X.C., Huang, H., Huan, Z.: A weighted dictionary learning model for denoising images corrupted by mixed noise. IEEE Trans. Image Process. 22, 1108–1120 (2012). https://doi.org/10.1109/TIP.2012.2227766
Ma, H., Nie, Y.: Mixed noise removal algorithm combining adaptive directional weighted mean filter and improved adaptive anisotropic diffusion model. Math. Probl. Eng. 2018, 1–19 (2018). https://doi.org/10.1155/2018/6492696
Madhura, J.J., Babu, D.R.R.: An effective hybrid filter for the removal of gaussian-impulsive noise in computed tomography images. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1815–1820 (2017). https://doi.org/10.1109/ICACCI.2017.8126108
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279 (2009). https://doi.org/10.1109/ICCV.2009.5459452
Maji, S.K., Boulanger, J.: A variational model for poisson gaussian joint denoising deconvolution. In: IEEE 18th International Symposium on Biomedical Imaging, pp. 1527–1530 (2021)
Maji, S.K., Dargemont, C., Salamero, J., Boulanger, J.: Joint denoising-deconvolution approach for fluorescence microscopy. In: IEEE 13th International Symposium on Biomedical Imaging, pp. 128–131 (2016)
Marks, R.J., Wise, G.L., Haldeman, D.G., Whited, J.L.: Detection in laplace noise. IEEE Trans. Aerosp. Electron. Syst. AES-14(6), 866–872 (1978). https://doi.org/10.1109/TAES.1978.308550
Rodríguez, P., Rojas, R., Wohlberg, B.: Mixed gaussian-impulse noise image restoration via total variation. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1077–1080 (2012). https://doi.org/10.1109/ICASSP.2012.6288073
Shi, K., Zhang, D., Guo, Z., Sun, J., Wu, B.: A non-divergence diffusion equation for removing impulse noise and mixed gaussian impulse noise. Neurocomputing 173, 659–670 (2015). https://doi.org/10.1016/j.neucom.2015.08.012
Xiao, Y., Zeng, T., Yu, J., Ng, M.: Restoration of images corrupted by mixed gaussian-impulse noise via l. Pattern Recognit. 44, 1708–1720 (2011). https://doi.org/10.1016/j.patcog.2011.02.002
Zeng, X., Yang, L.: Mixed impulse and gaussian noise removal using detail-preserving regularization. Opt. Eng. 49, 097002 (2010). https://doi.org/10.1117/1.3485756
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206
Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/TIP.2018.2839891
Zuo, W., Zhang, K., Zhang, L.: Convolutional neural networks for image denoising and restoration. In: Bertalmío, M. (ed.) Denoising of Photographic Images and Video. ACVPR, pp. 93–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96029-6_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Maji, S.K., Saha, A. (2023). A Bayesian Approach to Gaussian-Impulse Noise Removal Using Hessian Norm Regularization. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-31407-0_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31406-3
Online ISBN: 978-3-031-31407-0
eBook Packages: Computer ScienceComputer Science (R0)