Skip to main content

A Bayesian Approach to Gaussian-Impulse Noise Removal Using Hessian Norm Regularization

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1776))

Included in the following conference series:

Abstract

The problem of removing mixed noise from images is a challenging problem due to their ill-posed nature. In this paper, we propose a Bayesian technique for the removal of mixed Gaussian-Impulse noise from images. The proposed optimization problem is derived from the maximum a posteriori (MAP) estimates of the noise statistics and makes use of a total variation (TV) and a nuclear norm of the Hessian as its two regularization terms. While TV ensures smoothness to the solution, the use of Hessian takes into account detail preservation in the final optimized output. The proposed problem is then solved under the framework of primal-dual algorithms. Experimental evaluation shows that the proposed method can significantly improve the restoration quality of the images, compared to the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aetesam, H., Maji, S.K.: Noise dependent training for deep parallel ensemble denoising in magnetic resonance images. Biomed. Signal Process. Control 66, 102405 (2021). https://doi.org/10.1016/j.bspc.2020.102405. https://www.sciencedirect.com/science/article/pii/S1746809420305115

  2. Aetesam, H., Maji, S.K., Boulanger, J.: A two-phase splitting approach for the removal of gaussian-impulse noise from hyperspectral images. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds.) CVIP 2020. CCIS, vol. 1376, pp. 179–190. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1086-8_16

    Chapter  Google Scholar 

  3. Aetesam, H., Maji, S.K., Yahia, H.: Bayesian approach in a learning-based hyperspectral image denoising framework. IEEE Access 9, 169335–169347 (2021). https://doi.org/10.1109/ACCESS.2021.3137656

    Article  Google Scholar 

  4. Aetesam, H., Poonam, K., Maji, S.K.: Proximal approach to denoising hyperspectral images under mixed-noise model. IET Image Process. 14(14), 3366–3372 (2020). https://doi.org/10.1049/iet-ipr.2019.1763. https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1763

  5. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65 (2005). https://doi.org/10.1109/CVPR.2005.38

  6. Cai, J.F., Chan, R., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Problems and Imaging 2 (05 2008). https://doi.org/10.3934/ipi.2008.2.187

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2010). https://doi.org/10.1007/s10851-010-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Condat, L.: A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2012). https://doi.org/10.1007/s10957-012-0245-9

    Article  MathSciNet  MATH  Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  10. Delon, J., Desolneux, A.: A patch-based approach for removing impulse or mixed gaussian-impulse noise. SIAM J. Imaging Sci. 6, 1140–1174 (2013). https://doi.org/10.1137/120885000

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, G., Cahill, L.: An adaptive gaussian filter for noise reduction and edge detection. In: 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, pp. 1615–1619 (1993). https://doi.org/10.1109/NSSMIC.1993.373563

  12. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality deblocking of compressed color images. In: 2006 14th European Signal Processing Conference, pp. 1–5 (2006)

    Google Scholar 

  13. Guan, J., Lai, R., Xiong, A., Liu, Z., Gu, L.: Fixed pattern noise reduction for infrared images based on cascade residual attention CNN. Neurocomputing 377, 301–313 (2020). https://doi.org/10.1016/j.neucom.2019.10.054. https://www.sciencedirect.com/science/article/pii/S0925231219314341

  14. Huang, T., Dong, W., Xie, X., Shi, G., Bai, X.: Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3186 (2017). https://doi.org/10.1109/TIP.2017.2676466

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2neighbor: self-supervised denoising from single noisy images. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14776–14785 (2021). https://doi.org/10.1109/CVPR46437.2021.01454

  16. Islam, M.T., Mahbubur Rahman, S., Omair Ahmad, M., Swamy, M.: Mixed gaussian-impulse noise reduction from images using convolutional neural network. Signal Process. Image Commun. 68, 26–41 (2018). https://doi.org/10.1016/j.image.2018.06.016. https://www.sciencedirect.com/science/article/pii/S0923596518300705

  17. Cai, J.F., Chan, R.H., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, J., Yang, J., Cui, Y., Luo, L.: Mixed noise removal by weighted low rank model. Neurocomputing 151, 817–826 (2015). https://doi.org/10.1016/j.neucom.2014.10.017

    Article  Google Scholar 

  19. Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23, 2651–2662 (2014). https://doi.org/10.1109/TIP.2014.2317985

    Article  MathSciNet  MATH  Google Scholar 

  20. Ko, S.J., Lee, Y.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circ. Syst. 38(9), 984–993 (1991). https://doi.org/10.1109/31.83870

    Article  Google Scholar 

  21. Liu, J., Tai, X.C., Huang, H., Huan, Z.: A weighted dictionary learning model for denoising images corrupted by mixed noise. IEEE Trans. Image Process. 22, 1108–1120 (2012). https://doi.org/10.1109/TIP.2012.2227766

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, H., Nie, Y.: Mixed noise removal algorithm combining adaptive directional weighted mean filter and improved adaptive anisotropic diffusion model. Math. Probl. Eng. 2018, 1–19 (2018). https://doi.org/10.1155/2018/6492696

  23. Madhura, J.J., Babu, D.R.R.: An effective hybrid filter for the removal of gaussian-impulsive noise in computed tomography images. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1815–1820 (2017). https://doi.org/10.1109/ICACCI.2017.8126108

  24. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279 (2009). https://doi.org/10.1109/ICCV.2009.5459452

  25. Maji, S.K., Boulanger, J.: A variational model for poisson gaussian joint denoising deconvolution. In: IEEE 18th International Symposium on Biomedical Imaging, pp. 1527–1530 (2021)

    Google Scholar 

  26. Maji, S.K., Dargemont, C., Salamero, J., Boulanger, J.: Joint denoising-deconvolution approach for fluorescence microscopy. In: IEEE 13th International Symposium on Biomedical Imaging, pp. 128–131 (2016)

    Google Scholar 

  27. Marks, R.J., Wise, G.L., Haldeman, D.G., Whited, J.L.: Detection in laplace noise. IEEE Trans. Aerosp. Electron. Syst. AES-14(6), 866–872 (1978). https://doi.org/10.1109/TAES.1978.308550

  28. Rodríguez, P., Rojas, R., Wohlberg, B.: Mixed gaussian-impulse noise image restoration via total variation. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1077–1080 (2012). https://doi.org/10.1109/ICASSP.2012.6288073

  29. Shi, K., Zhang, D., Guo, Z., Sun, J., Wu, B.: A non-divergence diffusion equation for removing impulse noise and mixed gaussian impulse noise. Neurocomputing 173, 659–670 (2015). https://doi.org/10.1016/j.neucom.2015.08.012

    Article  Google Scholar 

  30. Xiao, Y., Zeng, T., Yu, J., Ng, M.: Restoration of images corrupted by mixed gaussian-impulse noise via l. Pattern Recognit. 44, 1708–1720 (2011). https://doi.org/10.1016/j.patcog.2011.02.002

    Article  MATH  Google Scholar 

  31. Zeng, X., Yang, L.: Mixed impulse and gaussian noise removal using detail-preserving regularization. Opt. Eng. 49, 097002 (2010). https://doi.org/10.1117/1.3485756

    Article  Google Scholar 

  32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017). https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  34. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018). https://doi.org/10.1109/TIP.2018.2839891

    Article  MathSciNet  Google Scholar 

  35. Zuo, W., Zhang, K., Zhang, L.: Convolutional neural networks for image denoising and restoration. In: Bertalmío, M. (ed.) Denoising of Photographic Images and Video. ACVPR, pp. 93–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96029-6_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumar Maji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maji, S.K., Saha, A. (2023). A Bayesian Approach to Gaussian-Impulse Noise Removal Using Hessian Norm Regularization. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics