Skip to main content

Sequence Recognition in Bharatnatyam Dance

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

Bharatanatyam is the oldest Indian Classical Dance (ICD) which is learned and practiced across India and the world. Adavu is the core of this dance form. There exist 15 Adavus and 58 variations. Each Adavu variation comprises a well-defined set of motions and postures (called dance steps) that occur in a particular order. So, while learning Adavus, students not only learn the dance steps but also take care of its sequence of occurrences. This paper proposed a method to recognize these sequences. In this work, firstly, we recognize the involved Key Postures (KPs) and motions in the Adavu using Convolutional Neural Network (CNN) and Support Vector Machine (SVM), respectively. In this, CNN achieves 99% and SVM’s recognition accuracy becomes 84%. Next, we compare these KP and motion sequences with the ground truth to find the best match using the Edit Distance algorithm with an accuracy of 98%. The paper contributes hugely to the state-of-the-art in the form of digital heritage, dance tutoring system, and many more. The paper addresses three novelties; (a) Recognizing the sequences based on the KPs and motions rather than only KPs as reported in the earlier works. (b) The performance of the proposed work is measured by analyzing the prediction time per sequence. We also compare our proposed approach with the previous works that deal with the same problem statement. (c) It tests the scalability of the proposed approach by including all the Adavu variations, unlike the earlier literature, which uses only one/two variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23(2), 255–281 (2012). https://doi.org/10.1007/s00138-010-0298-4

    Article  Google Scholar 

  2. Aich, A., Mallick, T., Bhuyan, H.B.G.S., Das, P.P., Majumdar, A.K.: NrityaGuru: a dance tutoring system for Bharatanatyam using kinect. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds.) NCVPRIPG 2017. CCIS, vol. 841, pp. 481–493. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0020-2_42

    Chapter  Google Scholar 

  3. Bhuyan, H., Mallick, T., Das, P.P., Majumdar, A.K.: Annotated Bharatanatyam data set, May 2022. https://hci.cse.iitkgp.ac.in/Miscellaneous.html

  4. Bhuyan, H., Das, P.P., Dash, J.K., Killi, J.: An automated method for identification of key frames in Bharatanatyam dance videos. IEEE Access 9, 72670–72680 (2021)

    Article  Google Scholar 

  5. Bhuyan, H., Killi, J., Das, P.P., Dash, J.: Motion recognition in Bharatanatyam. IEEE Access (2022). https://doi.org/10.1109/ACCESS.2022.3184735

  6. Bhuyan, H., Roy, M., Das, P.P.: Motion classification in Bharatanatyam dance. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds.) NCVPRIPG 2019. CCIS, vol. 1249, pp. 408–417. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8697-2_38

    Chapter  Google Scholar 

  7. Biswas, S., Ghildiyal, A., Sharma, S.: Classification of Indian dance forms using pre-trained model-VGG. In: 2021 Sixth International Conference on WiSPNET, pp. 278–282. IEEE (2021)

    Google Scholar 

  8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  9. Chaudhry, H., Tabia, K., Rahim, S.A., BenFerhat, S.: Automatic annotation of traditional dance data using motion features. In: ICDAMT, pp. 254–258. IEEE (2017)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  11. Dubey, A.K., Jain, V.: Comparative study of convolution neural network’s relu and leaky-relu activation functions. In: Mishra, S., Sood, Y.R., Tomar, A. (eds.) Applications of Computing, Automation and Wireless Systems in Electrical Engineering. LNEE, vol. 553, pp. 873–880. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6772-4_76

    Chapter  Google Scholar 

  12. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5353–5360 (2015)

    Google Scholar 

  13. Bhuyan, H., Das, P.P.: Recognition of Adavus in Bharatanatyam dance. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds.) CVIP 2020. CCIS, vol. 1378, pp. 174–185. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1103-2_16

    Chapter  Google Scholar 

  14. Jain, N., Bansal, V., Virmani, D., Gupta, V., Salas-Morera, L., Garcia-Hernandez, L.: An enhanced deep convolutional neural network for classifying Indian classical dance forms. Appl. Sci. 11(14), 6253 (2021)

    Article  Google Scholar 

  15. Kale, G., Patil, V.: Bharatnatyam Adavu recognition from depth data. In: 2015 Third ICIIP, pp. 246–251. IEEE (2015)

    Google Scholar 

  16. Kaushik, V., Mukherjee, P., Lall, B.: Nrityantar: pose oblivious Indian classical dance sequence classification system. In: 11th ICVGIP, pp. 1–7 (2018)

    Google Scholar 

  17. Kishore, P., et al.: Indian classical dance action identification and classification with convolutional neural networks. Adv. Multimedia 2018 (2018)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  19. Kumar, K., Kishore, P., Kumar, D.A., Kumar, E.K.: Indian classical dance action identification using adaboost multiclass classifier on multifeature fusion. In: 2018 Conference on SPACES, pp. 167–170. IEEE (2018)

    Google Scholar 

  20. Mallick, T., Bhuyan, H., Das, P.P., Majumdar, A.K.: Annotated Bharatanatyam data set, May 2017. https://hci.cse.iitkgp.ac.in/Audio%20Data.html

  21. Mallick, T., Das, P.P., Majumdar, A.K.: Posture and sequence recognition for Bharatanatyam dance performances using machine learning approaches. J. Vis. Commun. Image Represent. 87, 103548 (2022)

    Article  Google Scholar 

  22. Microsoft: Microsoft kinect sensor v1 to capture RGB, depth, and skeleton stream, November 2010. https://msdn.microsoft.com/en-us/library/hh438998.aspx

  23. Mohanty, A., et al.: Nrityabodha: towards understanding Indian classical dance using a deep learning approach. Sig. Process. Image Commun. 47, 529–548 (2016)

    Article  Google Scholar 

  24. Naik, A.D., Supriya, M.: Classification of Indian classical dance images using convolution neural network. In: ICCSP, pp. 1245–1249. IEEE (2020)

    Google Scholar 

  25. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  26. Saha, S., Ghosh, S., Konar, A., Nagar, A.K.: Gesture recognition from Indian classical dance using kinect sensor. In: 5th International Conference on CICSN, pp. 3–8. IEEE (2013)

    Google Scholar 

  27. Shailesh, S., Judy, M.: Computational framework with novel features for classification of foot postures in Indian classical dance. Intell. Decis. Technol. 14(1), 119–132 (2020)

    Article  Google Scholar 

  28. Sharma, A.: Recognising Bharatanatyam dance sequences using RGB-D data. IIT, Kanpur, India (2013)

    Google Scholar 

  29. Venkatesh, P., Jayagopi, D.B.: Automatic Bharatnatyam dance posture recognition and expertise prediction using depth cameras. In: Bi, Y., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2016. LNNS, vol. 16, pp. 1–14. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56991-8_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Dhaipule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuyan, H., Dhaipule, R., Das, P.P. (2023). Sequence Recognition in Bharatnatyam Dance. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics