Skip to main content

Automated Sulcus Depth Measurement on Axial Knee MR Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1776))

Included in the following conference series:

  • 535 Accesses

Abstract

Patellofemoral instability is a knee disorder in which the patella, slips out of its usual placement leading to knee pain. The patella may displace from its position due to abnormality in the shape of patellar surface on femur bone. The orthopaedic experts manually measure certain parameters from the available axial knee scans for the patellar instability diagnosis, which is labor-intensive and susceptible to inter- and intra-observer variations. The automated segmentation of femur region in knee magnetic resonance (MR) image can help in easily identifying the abnormality in the patellar surface. Therefore, in this paper, the femur bone in the axial knee MR scans has been segmented using two variants of U-Net: basic U-Net and U-Net++ and the results have been compared and visualized. The validation dice similarity coefficient (DSC) and accuracy of 89.62% and 94.05% were obtained, respectively, for U-Net. For U-Net++, the validation DSC of 95.04% and validation accuracy of 94.91% were obtained. Further, in this paper, the sulcus depth measurement has been automated using basic image processing techniques. A mean error of 0.565 mm was obtained when tested on 20 axial knee MR images. The T2-weighted knee MRI dataset of 55 patients has been acquired from Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh for training and testing of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fithian, D.C., Paxton, E.W., Stone, M.L., et al.: Epidemiology and natural history of acute patellar dislocation. Am. J. Sports Med. 32(5), 1114–21 (2004)

    Article  Google Scholar 

  2. Diederichs, G., Issever, A.S., Scheffler, S.: MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 30(4), 961–981 (2010)

    Article  Google Scholar 

  3. Horng, M.H., Kuok, C.P., Fu, M.J., et al.: Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. 2019 (2019)

    Google Scholar 

  4. Masad, I.S., Fahoum, A.A., Qasmieh, I.A.: Automated measurements of lumbar lordosis in T2-MR images using decision tree classifier and morphological image processing. Eng. Sci. Technol. Int. J. 22(4), 1027–1034 (2019)

    Google Scholar 

  5. Caesarendra, W., Rahmaniar, W., Mathew, J., et al.: Automated cobb angle measurement for adolescent idiopathic scoliosis using convolutional neural network. Diagnostics 12(2), 396 (2022). https://doi.org/10.3390/diagnostics12020396

  6. Zhang, K., Xu, N., Guo, C., et al.: MPF-net: an effective framework for automated cobb angle estimation. Med. Image Anal. 75, 102277 (2022)

    Article  Google Scholar 

  7. Prieto, J.C., Shah, H., Rosenbaum, A.J., et al.: An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation. In: Proceedings of SPIE-The International Society for Optical Engineering 2021, Bellingham, Washington, PMC (2016). https://doi.org/10.1117/12.2582243

  8. Sun, L., Kong, Q., Huang, Y., et al.: Automatic segmentation and measurement on knee computerized tomography images for patellar dislocation diagnosis. Comput. Math. Methods Med. 2020 (2020)

    Google Scholar 

  9. Pfirrmann, C.W., Zanetti, M., Romero, J., Hodler, J.: Femoral trochlear dysplasia: MR findings. Radiology 216(3), 858–64 (2000)

    Article  Google Scholar 

  10. Osman, N.M., Ebrahim, S.M.B.: Patellofemoral instability: quantitative evaluation of predisposing factors by MRI. Egypt. J. Radiol. Nuclear Med. 47(4), 1529–1538 (2016)

    Article  Google Scholar 

  11. Ridhma, Kaur, M., Sofat, S., et al.: Review of automated segmentation approaches for knee images. IET Image Process. 15(2), 302–324 (2021)

    Google Scholar 

  12. Kang, Y., Engelke, K., Kalender, W.A.: A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5), 586–598 (2003)

    Google Scholar 

  13. Wu, D., Sofka, M., Birkbeck, N., Zhou, S.K.: Segmentation of multiple knee bones from CT for orthopedic knee surgery planning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 372–380. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_47

    Chapter  Google Scholar 

  14. Dam, E.B., Lillholm, M., Marques, J., et al.: Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative. J. Med. Imaging 2(2), 024001 (2015)

    Google Scholar 

  15. Gandhamal, A., Talbar, S., Gajre, S., et al.: Fully automated subchondral bone segmentation from knee MR images: data from the osteoarthritis initiative. Comput. Biol. Med. 88(1), 110–125 (2017)

    Article  Google Scholar 

  16. Chen, H., Sprengers, André M.J., Kang, Y., et al.: Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee. Med. Biol. Eng. Comput. 57(5), 1015–1027 (2019)

    Google Scholar 

  17. Driban, J., Fripp, J., Tamez-Pena, J., et al.: On the use of coupled shape priors for segmentation of magnetic resonance images of the knee. IEEE J. Biomed. Health Inform. 19(3), 1153–1167 (2015)

    Google Scholar 

  18. Fripp, J., Crozier, S., Warfield, S.K., et al.: Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee. Phys. Med. Biol. 52(6), 1617–1631 (2007)

    Article  Google Scholar 

  19. Yin, Y., Zhang, X., Williams, R., et al.: LOGISMOS-layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imaging 29(12), 2023–2037 (2010)

    Article  Google Scholar 

  20. Prasoon, A., Igel, C., Loog, M., et al.: Femoral cartilage segmentation in Knee MRI scans using two stage voxel classification. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Osaka, Japan, pp. 5469–5472 (2013)

    Google Scholar 

  21. Pang, J., Li, P.Y., Qiu, M., Chen, W., Qiao, L.: Automatic articular cartilage segmentation based on pattern recognition from Knee MRI images. J. Digit. Imaging 28(6), 695–703 (2015). https://doi.org/10.1007/s10278-015-9780-x

    Article  Google Scholar 

  22. Ambellan, F., Tack, A., Ehlke, M., et al.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019)

    Article  Google Scholar 

  23. Burton, W., Myers, C., Rullkoetter, P.: Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Comput. Methods Programs Biomed. 189, 105328 (2020)

    Article  Google Scholar 

  24. Gaj, S., Yang, M., Nakamura, K., et al.: Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Magn. Reson. Med. 84(1), 437–449 (2020)

    Article  Google Scholar 

  25. Deng, Y., You, L., Wang, Y., Zhou, X.: A coarse-to-fine framework for automated knee bone and cartilage segmentation data from the osteoarthritis initiative. J. Digit. Imaging 34(4), 833–840 (2021). https://doi.org/10.1007/s10278-021-00464-z

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  28. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  29. Goodfellow, Ian J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., et al. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  30. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  31. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridhma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ridhma, Kaur, M., Sofat, S., Chouhan, D.K., Prakash, M. (2023). Automated Sulcus Depth Measurement on Axial Knee MR Images. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics