Skip to main content

A Study on an Ensemble Model for Automatic Classification of Melanoma from Dermoscopy Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

Accurate melanoma classification from dermoscopy images is challenging due to low contrasts between skin lesions and normal tissue regions. The intraclass variance of melanomas in terms of color, texture, shape, size, uncertain boundary, and location of lesions in dermoscopy images adds to the complexity. Artifacts like body hair, blood vessels, nerves, ruler, and ink marks in dermoscopy images also hinder the classification performance. In this work, an inpainting technique has been studied to handle artifacts. Transfer learning models, namely EfficientNet B4, B5, DenseNet121, and Inception-ResNet V2, have been studied. A study on ensembling the results of all the mentioned models is also performed. The robustness of the models has been tested using stratified K-fold cross-validation with test time augmentation (TTA). The trained models with the mentioned inpainting technique outperformed several deep learning solutions in the literature on the SIIM-ISIC Melanoma Classification Challenge dataset. EfficientNet B5 has achieved the best AUC of 0.9287 among the stand-alone models, and the ensemble solution has achieved an AUC of 0.9297.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SIIM-ISIC Melanoma Classification Challenge Live Leaderboard.

References

  1. Rogers, H.W., Weinstock, M.A., Feldman, S.R., Coldiron, B.M.: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the us population, 2012. JAMA Dermatol. 151(10), 1081–1086 (2015)

    Article  Google Scholar 

  2. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA: Cancer J. Clin. 66(1), 7–30 (2016)

    Google Scholar 

  3. Stern, R.S.: Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch. Dermatol. 146(3), 279–282 (2010)

    Article  Google Scholar 

  4. US Cancer Statistics Working Group: United states cancer statistics: 1999–2010 incidence and mortality web-based report. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, vol. 201 (2013)

    Google Scholar 

  5. Jerant, A.F., Johnson, J.T., Sheridan, C.D., Caffrey, T.J.: Early detection and treatment of skin cancer. Am. Fam. Phys. 62(2), 357–368 (2000)

    Google Scholar 

  6. Balch, C.M., et al.: Final version of the American joint committee on cancer staging system for cutaneous melanoma. J. Clin. Oncol. 19(16), 3635–3648 (2001)

    Article  Google Scholar 

  7. Freedberg, K.A., Geller, A.C., Miller, D.R., Lew, R.A., Koh, H.K.: Screening for malignant melanoma: a cost-effectiveness analysis. J. Am. Acad. Dermatol. 41(5), 738–745 (1999)

    Article  Google Scholar 

  8. Binder, M., et al.: Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch. Dermatol. 131(3), 286–291 (1995)

    Article  Google Scholar 

  9. Silveira, M., et al.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Sel. Top. Signal Process. 3(1), 35–45 (2009)

    Article  Google Scholar 

  10. Stolz, W.: Abcd rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)

    Google Scholar 

  11. Blum, A., Rassner, G., Garbe, C.: Modified ABC-point list of dermoscopy: a simplified and highly accurate dermoscopic algorithm for the diagnosis of cutaneous melanocytic lesions. J. Am. Acad. Dermatol. 48(5), 672–678 (2003)

    Article  Google Scholar 

  12. Pehamberger, H., Steiner, A., Wolff, K.: In vivo epiluminescence microscopy of pigmented skin lesions. I. pattern analysis of pigmented skin lesions. J. Am. Acad. Dermatol. 17(4), 571–583 (1987)

    Google Scholar 

  13. Henning, J.S., Dusza, S.W., Wang, S.Q., Marghoob, A.A., Rabinovitz, H.S., Polsky, D., Kopf, A.W.: The cash (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)

    Article  Google Scholar 

  14. Garnavi, R., Aldeen, M., Bailey, J.: Computer-aided diagnosis of melanoma using border-and wavelet-based texture analysis. IEEE Trans. Inf. Technol. Biomed. 16(6), 1239–1252 (2012)

    Article  Google Scholar 

  15. Dolianitis, C., Kelly, J., Wolfe, R., Simpson, P.: Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch. Dermatol. 141(8), 1008–1014 (2005)

    Article  Google Scholar 

  16. Bono, A., et al.: Melanoma detection. Dermatology 205(4), 362–366 (2002)

    Article  Google Scholar 

  17. Cascinelli, N., Ferrario, M., Tonelli, T., Leo, E.: A possible new tool for clinical diagnosis of melanoma: the computer. J. Am. Acad. Dermatol. 16(2), 361–367 (1987)

    Article  Google Scholar 

  18. Mishra, N.K., Celebi, M.E.: An overview of melanoma detection in dermoscopy images using image processing and machine learning. arXiv preprint arXiv:1601.07843 (2016)

  19. Stanley, R.J., Stoecker, W.V., Moss, R.H.: A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images. Skin Res. Technol. 13(1), 62–72 (2007)

    Article  Google Scholar 

  20. Cheng, Y., et al.: Skin lesion classification using relative color features. Skin Res. Technol. 14(1), 53–64 (2008)

    Google Scholar 

  21. Ballerini, L., Fisher, R.B., Aldridge, B., Rees, J.: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Celebi, M., Schaefer, G. (eds.) Color Med. Image Anal., pp. 63–86. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-5389-1_4

    Chapter  Google Scholar 

  22. Tommasi, T., La Torre, E., Caputo, B.: Melanoma recognition using representative and discriminative kernel classifiers. In: Beichel, R.R., Sonka, M. (eds.) CVAMIA 2006. LNCS, vol. 4241, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11889762_1

    Chapter  Google Scholar 

  23. Kusumoputro, B., Ariyanto, A.: Neural network diagnosis of malignant skin cancers using principal component analysis as a preprocessor. In: 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36227), vol. 1, pp. 310–315. IEEE (1998)

    Google Scholar 

  24. Hameed, N., Hameed, F., Shabut, A., Khan, S., Cirstea, S., Hossain, A.: An intelligent computer-aided scheme for classifying multiple skin lesions. Computers 8(3), 62 (2019)

    Article  Google Scholar 

  25. Murugan, A., Nair, S.A.H., Kumar, K.S.: Detection of skin cancer using SVM, random forest and KNN classifiers. J. Med. Syst. 43(8), 1–9 (2019)

    Article  Google Scholar 

  26. Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)

    Article  Google Scholar 

  27. Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  28. Haenssle, H.A., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  29. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2016)

    Article  Google Scholar 

  30. Xingguang, J., Yuan, W., Luo, Z., Yu, Z., et al.: Deep neural network for melanoma classification in dermoscopic images. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 666–669. IEEE (2021)

    Google Scholar 

  31. Li, C., Qiao, Z., Wang, K., Hongxing, J.: Improved efficientnet-B4 for melanoma detection. In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 127–130. IEEE (2021)

    Google Scholar 

  32. Zhang, R.: Melanoma detection using convolutional neural network. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 75–78. IEEE (2021)

    Google Scholar 

  33. Jiang, Y., Huang, R., Shi, J., et al.: Efficientnet-based model with test time augmentation for cancer detection. In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 548–551. IEEE (2021)

    Google Scholar 

  34. Zhang, Y., Wang, C.: SIIM-ISIC melanoma classification with densenet. In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 14–17. IEEE (2021)

    Google Scholar 

  35. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  36. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shanmugam, D., Blalock, D., Balakrishnan, G., Guttag, J.: When and why test-time augmentation works. arXiv preprint arXiv:2011.11156 (2020)

  38. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8(1), 1–8 (2021)

    Google Scholar 

  39. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  40. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., Han, J.: On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019)

  41. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subin Sahayam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adepu, A.K., Sahayam, S., Arramraju, R., Jayaraman, U. (2023). A Study on an Ensemble Model for Automatic Classification of Melanoma from Dermoscopy Images. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics