Skip to main content

Left Ventricle Segmentation of 2D Echocardiography Using Deep Learning

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

To identify the heart-related issues the very first step used by clinicians in diagnosis is to correctly identify the clinical indices which are possible by accurate Left Ventricle (LV) segmentation. Our work is related to building a deep learning model that automatically segments the cardiac left ventricle in an echocardiographic image into epicardium, endocardium, and left atrium. We propose the Vgg16 U-Net architecture for LV segmentation in this paper. On the CAMUS dataset, the Vgg16 Unet model is new, and it has demonstrated promising results for endocardium segmentation. The dice metric values achieved for endocardium, epicardium, and left atrium are 0.9412\(\pmb {\pm }\)0.0289, 0.8786\(\pmb {\pm }\)0.0420, and 0.9020\(\pmb {\pm }\)0.0908 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Heart Association. “Heart Disease and Stroke Statistics Update Fact Sheet At-a-Glance; 2021.” (2021)

    Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  3. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imag. 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  4. Azarmehr, N., et al.: Automated segmentation of left ventricle in 2D echocardiography using deep learning. arXiv preprint: arXiv:2003.07628 (2020)

  5. Lacerda, S.G., et al.: Left ventricle segmentation in echocardiography using a radial-search-based image processing algorithm. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE (2008)

    Google Scholar 

  6. Bernard, O., et al.: Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans. Med. Imag. 35(4), 967–977 (2015)

    Article  Google Scholar 

  7. Zyuzin, V., et al.: Segmentation of 2D echocardiography images using residual blocks in U-net architectures. In: 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE (2020)

    Google Scholar 

  8. Daimary, D., et al.: Brain tumor segmentation from MRI images using hybrid convolutional neural networks. Procedia Comput. Sci. 167, 2419–2428 (2020)

    Article  Google Scholar 

  9. Leclerc, S., et al.: Deep learning segmentation in 2D echocardiography using the CAMUS dataset: automatic assessment of the anatomical shape validity. arXiv preprint: arXiv:1908.02994 (2019)

  10. Simonyan, K., Andrew Z.: Very deep convolutional networks for large-scale image recognition. arXiv preprint: arXiv:1409.1556 (2014)

  11. Hu, J., et al.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 4 (2018)

    Google Scholar 

  12. Leclerc, S., et al.: RU-Net: a refining segmentation network for 2D echocardiography. In: 2019 IEEE International Ultrasonics Symposium (IUS). IEEE (2019)

    Google Scholar 

  13. Yang, Y., Sermesant, M.: Shape constraints in deep learning for robust 2D echocardiography analysis. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 22–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_3

    Chapter  Google Scholar 

  14. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  15. Lin, T.-Y., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Sudhish N. George for his comments on the earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamla Beevi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Upadhyay, S., Beevi, A.S., Kalady, S. (2023). Left Ventricle Segmentation of 2D Echocardiography Using Deep Learning. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1776. Springer, Cham. https://doi.org/10.1007/978-3-031-31407-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31407-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31406-3

  • Online ISBN: 978-3-031-31407-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics