Skip to main content

Detection of Coal Quarry and Coal Dump Regions Using the Presence of Mine Water Bodies from Landsat 8 OLI/TIRS Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

Surface mining has major environmental, social, and economical adversities, which makes it an active area of research in remote sensing. Surface coal mining has additional adversities of coal seam fires. Thus, the detection, classification, and monitoring of such regions have various research challenges. The surface coal mining land classes cover smaller areas compared to mid-resolution satellite images making them challenging to detect. Coal quarry and coal dump regions are such kinds of smaller land classes. They can be detected as a single land class as discussed in the literature. However, these land classes are observed to be difficult to detect separately as they follow near similar spectral characteristics. Hence, this paper proposes a novel technique to separate these regions using the presence of water bodies. Coal dump regions do not have water bodies, whereas some coal quarry regions may have water bodies. Such quarry regions are detected at first and further, they are used to train an unsupervised single class support vector machine (SVM). This model is used to detect the coal dump regions by detecting the outliers. The proposed technique provides average precision and recall for coal quarry, and coal dump regions as \([84.88\%,61.44\%]\), and \([70.91\%,52.79\%]\), respectively over the seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precision, and Recall are defined as \(t_p/(t_p+f_p)\), and \(t_p\)/(\(t_p\)+\(f_n\)), where \(t_p\), \(f_p\), and \(f_n\), are true positive, false positive, and false negative, respectively. \(F_1\) score is computed as \(2 \times (Precision \times Recall)/(Precision + Recall)\).

References

  1. Aswatha, S.M., Saini, V., Mukherjee, J., Biswas, P.K., Aikat, S., Misra, A.: Unsupervised detection of surface mine sites using sentinel multi-spectral imagery and dual-polarimetric SAR data. In: Proceedings of the 11th Indian Conference on Computer Vision, Graph. Image Process., pp. 1–8 (2018)

    Google Scholar 

  2. Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., Pan, Y.: Monitoring the seasonal bare soil areas in beijing using multitemporal tm images. In: Geoscience and Remote Sensing Symposium, 2004. Proceedings. 2004 IEEE International. 5, pp. 3379–3382. IEEE (2004)

    Google Scholar 

  3. Demirel, N., Düzgün, Ş, Emil, M.K.: Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Enviro. 25(4), 342–349 (2011)

    Article  Google Scholar 

  4. Demirel, N., Emil, M.K., Duzgun, H.S.: Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 86(1), 3–11 (2011)

    Article  Google Scholar 

  5. Drury, S.A.: Image interpretation in geology. No. 551.0285 D796 1993, Chapman and Hall, London (1993)

    Google Scholar 

  6. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35 (2014)

    Article  Google Scholar 

  7. Gao, Y., Kerle, N., Mas, J.F.: Object-based image analysis for coal fire-related land cover mapping in coal mining areas. Geocarto Int. 24(1), 25–36 (2009)

    Article  Google Scholar 

  8. Han, Y., Li, M., Li, D.: Vegetation index analysis of multi-source remote sensing data in coal mine wasteland. NZ. J. Agric. Res. 50(5), 1243–1248 (2007)

    Article  Google Scholar 

  9. Huo, H., Ni, Z., Gao, C., Zhao, E., Zhang, Y., Lian, Y., Zhang, H., Zhang, S., Jiang, X., Song, X., Zhou, P., Cui, T.: A study of coal fire propagation with remotely sensed thermal infrared data. Remote Sens. 7(3), 3088–3113 (2015)

    Article  Google Scholar 

  10. Karan, S.K., Samadder, S.R., Maiti, S.K.: Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J. Environ. Manage. 182, 272–283 (2016)

    Article  Google Scholar 

  11. Manevitz, L.M., Yousef, M.: One-class SVMS for document classification. J. Mach. Learn. Res., 139–154 (2001)

    Google Scholar 

  12. Mezned, N., Dkhala, B., Abdeljaouad, S.: Multitemporal and multisensory Landsat ETM+ and OLI 8 data for mine waste change detection in northern Tunisia. J. Spat. Sci. 63(1), 135–153 (2018)

    Article  Google Scholar 

  13. Mien, T.: Mine waste water management and treatment in coal mines in Vietnam. Geosyst. Eng. 15(1), 66–70 (2012)

    Article  Google Scholar 

  14. Mukherjee, J., Mukhopadhyay, J., Chakravarty, D., Aikat, S.: Automated seasonal detection of coal surface mine regions from Landsat 8 OLI images. In: IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 2435–2438 (2019). https://doi.org/10.1109/IGARSS.2019.8898789

  15. Mukherjee, J.: A study on automated detection of surface and sub-surface coal seam fires using isolation forest from Landsat 8 OLI/TIRS images. In: IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 5512–5515 (2022)

    Google Scholar 

  16. Mukherjee, J., Mukherjee, J., Chakravarty, D.: Automated seasonal separation of mine and non mine water bodies from Landsat 8 OLI/TIRS using clay mineral and iron oxide ratio. IEEE J. Sel. Topics in Appl. Earth Observ. Remote Sens. 12(7), 2550–2556 (2019)

    Google Scholar 

  17. Mukherjee, J., Mukherjee, J., Chakravarty, D.: Automated Detection of Mine Water Bodies Using Landsat 8 OLI/TIRS in Jharia. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds.) NCVPRIPG 2019. CCIS, vol. 1249, pp. 480–489. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-8697-2_45

    Chapter  Google Scholar 

  18. Mukherjee, J., Mukherjee, J., Chakravarty, D., Aikat, S.: A novel index to detect opencast coal mine areas from Landsat 8 OLI/TIRS. IEEE J. Sel. Topics in Appl. Earth Observ. Remote Sens. 12(3), 891–897 (2019)

    Google Scholar 

  19. Mukherjee, J., Mukherjee, J., Chakravarty, D., Aikat, S.: Unsupervised Detection of Active, New, and Closed Coal Mines with Reclamation Activity from Landsat 8 OLI/TIRS Images. In: Deka, B., Maji, P., Mitra, S., Bhattacharyya, D.K., Bora, P.K., Pal, S.K. (eds.) PReMI 2019. LNCS, vol. 11941, pp. 397–404. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34869-4_43

    Chapter  Google Scholar 

  20. Mukherjee, J., Mukherjee, J., Chakravarty, D., Aikat, S.: Seasonal detection of coal overburden dump regions in unsupervised manner using Landsat 8 OLI/TIRS images at jharia coal fields. Multimedia Tools Appl. 80(28), 35605–35627 (2021)

    Article  Google Scholar 

  21. Mukherjee, J., Mukhopadhyay, J., Chakravarty, D.: Investigation of seasonal separation in mine and non mine water bodies using local feature analysis of land sat 8 OLI/TIRS images. In: 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp. 8961–8964 (2018)

    Google Scholar 

  22. Petropoulos, G.P., Partsinevelos, P., Mitraka, Z.: Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto Int. 28(4), 323–342 (2013)

    Article  Google Scholar 

  23. Popelková, R., Mulková, M.: Multitemporal aerial image analysis for the monitoring of the processes in the landscape affected by deep coal mining. Eur. J. Remote Sens. 49(1), 973–1009 (2016)

    Article  Google Scholar 

  24. Ranjan, A.K., Sahoo, D., Gorai, A.: Quantitative assessment of landscape transformation due to coal mining activity using earth observation satellite data in Jharsuguda coal mining region, Odisha, India. Environ. Dev. Sustain. 23(3), 4484–4499 (2021)

    Article  Google Scholar 

  25. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 12, 582–588 (1999)

    Google Scholar 

  26. Tracher, G.B., T.T.: Coal fire burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 59, 7–17 (2004)

    Google Scholar 

  27. USGS: Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product/ Accessed 11 Sep 2019

  28. Xu, H.: Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27(14), 3025–3033 (2006)

    Article  Google Scholar 

  29. Zeng, X., Liu, Z., He, C., Ma, Q., Wu, J.: Detecting surface coal mining areas from remote sensing imagery: an approach based on object-oriented decision trees. J. Appl. Remote Sens. 11(1), 015025 (2017)

    Article  Google Scholar 

  30. Zhang, M., Zhou, W., Li, Y.: The analysis of object-based change detection in mining area: a case study with pingshuo coal mine. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7, 1017–1023 (2017). https://doi.org/10.5194/isprs-archives-XLII-2-W7-1017-2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, J., Mukherjee, J., Chakravarty, D. (2023). Detection of Coal Quarry and Coal Dump Regions Using the Presence of Mine Water Bodies from Landsat 8 OLI/TIRS Images. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31417-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31416-2

  • Online ISBN: 978-3-031-31417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics