
T2CI-GAN: Text to Compressed Image
generation using Generative Adversarial

Network

Bulla Rajesh1,2[0000−0002−5731−9755], Nandakishore Dusa1, Mohammed
Javed1[0000−0002−3019−7401], Shiv Ram Dubey1[0000−0002−4532−8996], and P.

Nagabhushan1,2

1 Department of IT, IIIT Allahabad, Prayagraj, U.P, 211015, Idia
2 Department of CSE, Vignan University, Guntur, A.P, 522213, India

{rsi2018007, iwm2016002, javed, srdubey, pnagabhushan}@iiita.ac.in

Abstract. The problem of generating textual descriptions for the vi-
sual data has gained research attention in the recent years. In contrast
to that the problem of generating visual data from textual descriptions
is still very challenging, because it requires the combination of both Nat-
ural Language Processing (NLP) and Computer Vision techniques. The
existing methods utilize the Generative Adversarial Networks (GANs)
and generate the uncompressed images from textual description. How-
ever, in practice, most of the visual data are processed and transmitted
in the compressed representation. Hence, the proposed work attempts to
generate the visual data directly in the compressed representation form
using Deep Convolutional GANs (DCGANs) to achieve the storage and
computational efficiency. We propose GAN models for compressed image
generation from text. The first model is directly trained with JPEG com-
pressed DCT images (compressed domain) to generate the compressed
images from text descriptions. The second model is trained with RGB
images (pixel domain) to generate JPEG compressed DCT representa-
tion from text descriptions. The proposed models are tested on an open
source benchmark dataset Oxford-102 Flower images using both RGB
and JPEG compressed versions, and accomplished the state-of-the-art
performance in the JPEG compressed domain. The code will be publicly
released at GitHub after acceptance of paper.

Keywords: Compressed Domain · Deep Learning · DCT Coefficients ·
T2CI-GAN · JPEG Compression · Compressed Domain Pattern Recog-
nition · Text to Compressed Image.

1 Introduction

Generating visually realistic images based on the natural text descriptions is an
interesting research problem that warrants knowledge of both language process-
ing and computer vision. Unlike the problem of image captioning that generates

ar
X

iv
:2

21
0.

03
73

4v
1

 [
cs

.C
V

]
 1

 O
ct

 2
02

2

2 Bulla. Rajesh et al.

Fig. 1. JPEG Compression and Decompression architecture and extraction of JPEG
Compressed DCT image which is used in the proposed approach.

text descriptions from image, the challenge here is to generate semantically suit-
able images based on proper understanding of the text descriptions. Many inter-
esting techniques have been proposed in the literature to explore the problem of
generating pixel images from the given input texts [20], [27], [26], [16]. Moreover,
a very recent attempt by [11] is aimed to generate images in the compressed for-
mat. The whole idea here is to avoid synthesis of RGB images and subsequent
compression stage. In fact, in the current digital scenario, more and more images
and image frames (videos) are being stored and transmitted in compressed rep-
resentation. The compressed data in the internet world has reached more than
90% [19] of traffic. On the other hand, different compressed domain technologies
are being explored both by the software giants, like Uber [4] and Xerox [17], and
academia [9], [13], [23], [2], that can directly process and analyse compressed
data without decompression and re-compression. Some of the prominent works
in compressed document images are discussed in [7,8,10] and [19,18]. This gives
us strong motivation for exploring the idea of generating compressed images
directly from natural text descriptions, and that is attempted in this research
paper.

Recently, Generative Adversarial Network (GAN) models have been success-
fully used for generating realistic images from diverse inputs such as layouts [5],
texts[25], and scenes [1]. However, early GAN models [20] have generated im-
ages of low resolutions from the input text. In [20], the GAN model was used
to generate image from a single sentence. This method was implemented in two
stages. Initially the text sentence was encoded into a feature matrix using deep
CNNs and RNNs to extract the significant features. Then those features were
utilized to generate a picture. In order to improve the quality, a stacked GAN
was reported in [27]. It generated the output picture using two GANs. In the
first step, GAN-1 produced a low resolution image with basic shape and colors
along with the background generated from a random noise vector. In the second

Title Suppressed Due to Excessive Length 3

step, GAN-2 improvised the produced image by adding details and making some
required corrections. MirrorGAN was reported in [16] for text to image trans-
lation through re-description. This model has reported the improved semantic
consistency between text and produced output image. In [26], authors proposed
a Semantics Disentangling Generative Adversarial Network (SD-GAN) which
exploited the semantics of text description. However, all the GAN based tech-
niques discussed above were trained using RGB pixel images meant to generate
RGB images. Hence, our work is focused on employing the significant features of
GAN for generating compressed images directly from the given text descriptions.

In the recent literature, a GAN model was proposed for generating direct
compressed images from noise vector [11]. Since JPEG compression was the
most used format, the authors attempted to generate direct JPEG compressed
images rather than generating RGB images and compressing them separately.
Their GAN framework consists of Generator, Decoder and Discriminator sub
networks. The Generator consists of locally connected layers, quantization lay-
ers, and chroma subsampling layers. These locally connected layers perform the
block based operations similar to JPEG compression methods to generate JPEG
compressed images. In between the Generator and the Discriminator, a Decoder
was used to decompress the image to facilitate the comparison with ground truth
RGB image by the Discriminator network. In specific, this decoder performed
de-quantization and Inverse Discrete Cosine Transformation (IDCT) followed
by YCbCr to RGB transformations on the compressed images generated by the
Generator. Unlike [11] which generates the compressed images from noise, our
model generates the compressed images based on the given input text descrip-
tions.

Overall, this research paper propose two novel GAN models for generating
compressed images from text descriptions. The first GAN model is trained di-
rectly with JPEG compressed DCT images to generate compressed images from
text description. The second GAN model is trained with RGB images to gener-
ate compressed images from text descriptions. The proposed models have been
tested on Oxford-102 Flower images benchmark dataset using both the RGB and
JPEG compressed versions, reporting state-of-the-art performance in the com-
pressed domain. Rest of the paper is organized as follows: Section II presents the
preliminaries of used concepts. Section III discusses the proposed methodology
and GAN architectures. Section IV reports the detailed experimental results and
analysis. Finally, Section V concludes the paper with a summary.

2 Preliminaries

In this section, a brief description of JPEG compression, GAN model and GloVe
model is presented.

2.1 JPEG Compression

JPEG compression algorithm achieves compression by discarding the high fre-
quency components. Firstly, the RGB channels of the image are converted into

4 Bulla. Rajesh et al.

YCbCr format to separate the luminance (Y) and chrominance (CbCr) channels
as,

Y = (0.299× r + 0.587× g + 0.114× b) (1)

Cb = (−0.1687× r − 0.3313× g + 0.5× b+ 128) (2)

Cr = (0.5× r − 0.4187× g − 0.0813× b+ 128). (3)

Then each channel is divided into 8×8 non-overlapping pixel blocks. Forward Dis-
crete Cosine Transform (DCT) is applied on each block in each channel to convert
the 8 × 8 pixel block (let’s say P (x, y)) from spatial domain to frequency do-
main. Each DCT block, i.e., F (u, v), is quantized to keep only the low frequency
coefficients. Then Differential pulse code modulation (DPCM) is applied on the
DC components and Run Length Encoding (RLE) on AC components. Huffman
Coding is used to encode the DC and AC components in smaller number of bits.
In order to perform the decompression, Entropy decoding, De-Quantization, and
Inverse DCT (IDCT) are applied in the given order on the compressed image to
obtain the uncompressed image. The compression and decompression stages are
illustrated in Fig. 1. In the proposed work, the JPEG compressed DCT images
are directly extracted from the JPEG compressed stream and used for training
the deep learning model. The decompression is done only for the performance
analysis, otherwise it is not required in practice.

2.2 Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) [3] is a deep learning model built with
two networks, including Generator and Discriminator. The Generator (G) gen-
erates new images in the training images distribution and the Discriminator (D)
classifies the images between actual and generated images into real and fake cat-
egories, respectively. These two sub models are trained alternatively such that
Generator(G) tries to fool the Discriminator by generating data similar to real
domain, whereas the Discriminator is optimized to distinguish the generated im-
ages from the real images. Overall, the Generator and the Discriminator play a
two player min-max game. The objective function of the GAN is given as follows:

min
G

max
D

F (G,D) = Ey∼kd
[logD(x)]+

Ez∼kz
[log(1−D(G(z))] (4)

where y indicates real image sampled from kd (true data distribution), z indicates
noise vector sampled from kz (uniform or Gaussian distribution).

The Conditional GAN model [12] makes use of some additional information
along with the noise. Both Generator (G) and Discriminator (D) use this ad-
ditional information which is referred as conditioning variable ‘c’ that can be
text or any other data. Thus, the Generator on Conditional GAN generates the
images conditioned on variable ‘c’ as depicted in Fig. 2.

Title Suppressed Due to Excessive Length 5

Fig. 2. Conditional GAN architecture [12].

Fig. 3. The proposed T2CI-GAN Model-1 architecture using the backbone networks
of [20]. (a) Generator network and (b) Discriminator network.

2.3 GloVe Model

GloVe stands for Global Vectors [15]. GloVe is an unsupervised learning algo-
rithm. It is used for obtaining vector representations of words. It is an Open
Source project developed at stanford. Word vectors make words having same
meaning to cluster together and dissimilar words to repel. Word2Vec depends
on local context information of words. The advantage of GloVe is that, unlike
Word2vec to exctract or produce word vectors, it incorporates global statistics.

3 Proposed Methodology

In this section, we present the details of the proposed T2CI-GAN models for text
to compressed image translation. We propose two variants of T2CI-GAN with
simple Generator and customized Generator, respectively. First, we discuss the
base network architecture of the proposed T2CI-GAN models which is adapted
from T2I-GAN [20].

6 Bulla. Rajesh et al.

3.1 Network Architecture

The Deep Convolutional GAN (DC-GAN) architecture shown in Fig. 3 is used
for the implementation of text to image synthesis. This is our base architecture
(T2CI-GAN) for implementation of text to compressed image generation. First,
the Word Embeddings ψ(t) of given text-descriptions are obtained using the
GloVe model. It is concatenated with the Noise Vector ‘z’ and used as input to
the Generator. Hence we provide a pair of both Text Embedding vectors ψ(t)
and noise (z) as the input to T2CI-GAN model, instead of only noise.

Generator Network The embedding of size 300 and the noise of size 100 are
concatenated and given as input to the Dense layer. After Reshaping the output
of the Dense layer, a series of Convolutions and Batch Normalization are per-
formed, respectively for 4 times. It is then followed by Convolution2D Transpose
and finally a Convolution with ‘Tanh’ activation function. The ‘LeakyReLU’ ac-
tivation function is used after every Batch Normalization. It produces a image
tensor of shape 64× 64× 3 which is given as input to the Discriminator.

Discriminator Discriminator takes the output of Generator (64×64×3 image
tensor) and word embedding of size 300 as input. A series of 2D strided Convo-
lutions are performed on image tensor. Batch Normalization is applied after all
Convolutions except for first one. Before applying last Convolution, embedding
is concatenated with previous output. The ‘LeakyReLU’ activation function is
used and followed by ‘Dropout’ layer to all Convolution layers except for last
layer where ‘Sigmoid’ is used.

3.2 Proposed T2CI-GAN Model-1: Training with JPEG
Compressed DCT Images

Preparing JPEG Compressed DCT Image dataset This is an important
step for the proposed model. The JPEG compressed entropy encoded images of
the dataset are partially decompressed to obtain DCT Compressed version by
applying entropy decoding and De-Quantization steps in the decoder as shown
in Fig. 1. Sample images from the dataset in RGB and JPEG Compressed DCT
image formats are shown in Fig. 5 and Fig. 6, respectively. Note that after
conversion of RGB image into JPEG compressed DCT form, the images will be
in the form of coefficients upon which a custom transformation is applied where
a specified coefficients are selected to decrease the computational complexity
and ease the training process. In this transformation, since JPEG is applied
block wise (8 × 8 blocks) on an image, first 5 coefficients from first row, first 3
coefficients from the second row, and the first coefficient from the third row are
extracted from every 8× 8 block and making other values to zero. From Fig. 7
shown, we see very slight decrease in image quality compared to the one before
transformation.

Title Suppressed Due to Excessive Length 7

Normalization of the JPEG Compressed DCT Image It is important to
normalize the DCT coefficients extracted from above paragraph for training the
model. Unlike the original RGB dataset whose pixel values range from 0 to 255,
the exact range of values in the compressed image are not known. So, maximum
and minimum values are computed from all the DCT values of all images in the
dataset. Then, using this maximum and minimum values, the DCT pixel values
in the range from [-1, +1] are generated.

Loss Function Binary Cross-Entropy loss function is used in binary classifica-
tion tasks. It is also known as log loss [24] and given as,

BCE Loss = (− 1

N
)

N∑
i=1

xi(log p(xi)) + (1− xi)(log 1− p(xi)) (5)

where xi represents the actual class and log p(xi) is the probability of that class
and N is the total number of instances.

3.3 Training T2CI-GAN Model-1

Noise vector of size 100 concatenated with word-embedding vector of size 300
is given as input to the Generator network which performs Up-samplings and
Convolutions, and produces a 64× 64× 3 image as output. This image-tensor is
passed to Discriminator to classify it as fake (generated) or real (original). Train-
ing a GAN is a very challenging task, because both Generator and Discriminator
networks are trained simultaneously. The main goal of GAN training is to find
a point of equilibrium between the Generator and Discriminator models. So, it
makes training of GAN unstable. For stable training [6], Batch-normalization
is used in both Generator and Discriminator networks. The ‘LeakyReLU’ ac-
tivation function is used in all layers of Generator and Discriminator except
for output layer. The ‘tanh’ activation function is used for last layer in case of
Generator and the ‘Sigmoid’ activation function in case of Discriminator.

For training the proposed GAN Model-1, GAN-INT method [20] is used,
where the Discriminator is prepared on three pairs of inputs (original images,
original captions), (generated images, original captions), and (original images,
wrong captions). Binary Cross Entropy (BCE) loss function with ADAM opti-
mizer is used for both Generator and Discriminator networks with learning rate
= 0.0002 and momentum = 0.5. The BCE loss of generator is measured by first
decoding the output of generator into RGB channels. The network is trained for
500 epochs with a mini-batch size of 64. After training the Discriminator net-
work is discarded. For calculation of Generator loss, right descriptions is passed
to the model as input. Then, loss is computed on the outputs from Discriminator
(ranges between 0 and 1) and tensor of 1’s. For calculation of Discriminator loss,
three pairs of inputs (original images, original captions) for real loss, (generated
images, original captions) and (original images, wrong captions) for fake loss are

8 Bulla. Rajesh et al.

Fig. 4. The Generator network of the proposed T2CI-GAN Model-2. The Discriminator
is same as used in T2CI-GAN Model-1.)

considered. The sum of the real loss and fake loss is regarded as the Discrimi-
nator loss. Overall, the T2CI-GAN model-1 uses same architecture as used by
T2I-GAN Fig. 3, but trained with JPEG compressed DCT images.

The proposed model is able to generate good JPEG Compressed DCT images
close to the ones in the dataset, but on decompression to the RGB domain,
the images either get distorted or suffers with the mode collapse problem by
generating the similar images as shown in Fig. 10. We conclude that the T2CI-
GAN Model-1 fails to learn the RGB image information from JPEG Compressed
DCT images. Hence, we propose T2CI-GAN Model-2 next which solves this
problem.

3.4 Proposed T2CI-GAN Model-2 : With Modified Generator and
Training with RGB Images

It is noticed in T2CI-GAN Model-1 and in [11] that while training on compressed
images directly, DCT values fluctuate to a greater extent within the blocks and
also across the blocks. Thus, the Discriminator gives sub-par quality gradients
to the Generator and makes it difficult to train a decent Generator. Therefore,
in this backdrop, we propose T2CI-GAN Model-2 for text to compressed image
translation with modified Generator having the manual compression and decode
modules as utilized by [11] for compressed image generation from noise. The

Title Suppressed Due to Excessive Length 9

Fig. 5. Sample RGB images from Oxford 102 Flowers dataset with input text descrip-
tions.

Fig. 6. Corresponding sample JPEG Compressed DCT images generated from Oxford-
102 Flower images shown in Fig. 5 and input text descriptions.

Discriminator network in T2CI-GAN Model-2 is same as in T2CI-GAN Model-
1.

Modified Generator In this proposed model, the Generator is modified such
that it implements the idea of a JPEG encoder as used by [11]. Basically, we de-
velop the Generator of T2CI-GAN Model-2 by adding 6 locally connected layers
along with a quantization layer and an entropy encoder layer in the Generator
of T2CI-GAN Model-2. The modified Generator is shown in Fig. 4. After the
Generator generates a 64× 64× 3 image tensor from text and noise, the image
tensor is divided into 3 channels, and each channel is passed through a Locally
connected layer (Loc1) to generate Y, Cb, and Cr channels, respectively. Block
size 1 × 1 is used in Loc1 layer. The Y, Cb, and Cr channels are then passed
through another Locally connected layer (Loc2) which performs 8×8 block-wise
operation like DCT. Basically, the Loc2 layer produces amplitudes of DCT for
Y, Cb, and Cr channels, respectively. Next, the quantization is performed using
the standard JPEG quantization method, where DCT block values are divided
by a quantization matrix (based on quality factor). Finally an entropy encoder
layer is used after the training.

Decoder In the proposed T2CI-GAN Model-2, the Generator network gener-
ates the compressed versions of images (upto quantization) while trained using
RGB image dataset. So, during training it is needed to decompress the com-
pressed images into the RGB domain. For this, we use a non-trainable decoder
(H) which takes input from the Generator and converts it into RGB pixel values
and transfers the output to the Discriminator. In the decoder, De-quantization,

10 Bulla. Rajesh et al.

Fig. 7. The significance of applying the simple transformation on JPEG Compressed
DCT images.

Inverse Discrete Cosine Transform (2D IDCT) and color transformation are per-
formed from YCbCr to RGB. At last, pixel values are clipped to range [0,255],
and this is given as input to the Discriminator network.

Loss Function The loss function remains same for Discriminator, but for Gen-
erator extra loss term γ|H(G(z, t))−Ĝ(z, t)| is added to guide the locally con-
nected layers similar to [11]. Here H is the decoder, G is Generator, z is noise
vector, Ĝ indicates the layers of Generator before any Locally connected layer
has been used, and γ is a hyperparameter as weight between original Generator
loss and the modified Generator loss. The value of γ used in the experiments is
0.1

4 Experimental Results

4.1 Oxford-102 Flowers Dataset

Oxford-102 flowers dataset [14] has 102 flower categories in RGB format. Each
class contains around 40 to 258 pictures with total 8189 images. Each image of
the dataset has around 10 text-descriptions or captions portraying that image.
To train the proposed models 2500 flower images are JPEG compressed to gen-
erate JPEG compressed Oxford-102 flowers dataset. Some sample images and
captions of 102-flowers dataset are shown in Fig. 5. The corresponding sample
captions with JPEG Compressed Oxford-102 flowers dataset are shown in Fig.
6. The above transformation is applied on JPEG Compressed flowers dataset
to ease the training process. Fig. 7 shows sample flower image before and after
transformation.

4.2 Text to Compressed Image Results

T2CI-GAN Model-1 Results The T2CI-GAN Model-1 is trained with 2500
JPEG Compressed DCT Oxford-102 flowers dataset and corresponding captions.
The model is trained for 500 epochs. Fig. 8 shows the generated compressed im-
ages during training of the model. As mentioned earlier, the quality of generated

Title Suppressed Due to Excessive Length 11

Fig. 8. Sample output images generated for the text descriptions during training with
T2CI-GAN Model-1.

Fig. 9. Performance of T2CI-GAN Model-2, where (a) sample JPEG compressed DCT
images generated during training and (b) their corresponding decompressed images in
the RGB domain.

DCT images is good, but after decompressing them to RGB format, the resul-
tant images are either distorted or the same kind of images are generated for
different input captions. Fig. 10 shows different input texts, their correspond-
ing generated JPEG compressed images, and their corresponding decompressed
RGB images. It can be seen that only in a few cases the model gives correct
results irrespective of the generated compressed images which look very similar
for different input texts.

T2CI-GAN Model-2 Results In T2CI-GAN Model-2, the decoder is used to
convert the compressed version of images generated by the Generator back into
RGB format to feed them to the Discriminator network during training. This
model is trained for 500 epochs. Fig. 9 shows the compressed images (Quantized
DCT images) generated and corresponding decoded RGB images during train-
ing. Fig. 11 shows the sample Input text descriptions, Generated compressed
version of image (Quantized DCT image) and its corresponding decoded RGB

12 Bulla. Rajesh et al.

Fig. 10. Sample output images generated for the text descriptions during training with
the T2CI-GAN Model-1.

image. It can be observed that quality of the generated and decompressed im-
ages using T2CI-GAN Model-2 is much better than quality of the generated and
decompressed images using T2CI-GAN Model-1.

4.3 Quantitative Evaluation of the Model

In order to perform the quantitative evaluation, We compute the InceptionScore
[21] for the proposed models. Inception score is a metric which evaluates the
quality of generated images. It is mostly used for GANs evaluation which uses
a pre-trained InceptionV3 model [22]. Using this model we calculate conditional
probability of each generated image p(y|x)) and average of these conditional
probabilities which is marginal probability p(y). Next, we calculate KL diver-
gence for each generated image as follows:

KL = p(y|x)× (log(p(y|x))− log(p(y)). (6)

Summation of KL divergence over all images and average over all classes and
exponent of this result is inception score. Inception score captures quality of
images and image diversity (i.e., whether a wide range of images are generated
or not).

Table 1 shows the experimental of T2I-GAN [20], T2CI-GAN Model-1 and
T2CI-GAN Model-2, where input domain for training of the model, domain of
Generated images, domain of images to calculate inception score and inception
scores are shown. Table 2 shows inception scores of methods proposed for text
to compressed image generation. Here, instead of calculating Inception score
directly with generated images in compressed domain, we first decompress them
into RGB domain and then calculate the Inception score. From the results, it is
clear that T2CI-GAN Model-2 performs better compared to T2CI-GAN Model-1
and achieves promising and state-of-the-art results in the compressed domain.

Title Suppressed Due to Excessive Length 13

Fig. 11. Sample output images generated for the input text descriptions with the
T2CI-GAN Model-2.

Table 1. Performance comparison of T2I-GAN, T2CI-GAN Model-1 and T2CI-GAN
Model-2 on Oxford-102 Flower dataset images with output and Inception Score mea-
sured in their respective domains.

Model Input Domain Generator Output Domain Inception Score

T2I-GAN RGB RGB RGB 2.38 ± .17
Model-1 Compressed Compressed Compressed 1.08 ± .01
Model-2 RGB Compressed Compressed 1.01 ± .01

Table 2. Performance of the proposed compressed domain models, i.e., T2CI-GAN
Model-1 and T2CI-GAN Model-2, on Oxford-102 Flower dataset with output in com-
pressed domain and Inception Score measured in RGB domain.

Model Input Domain Generator Output Domain Inception Score

Model-1 Compressed Compressed RGB 1.42 ± .02
Model-2 RGB Compressed RGB 2.01 ± .12

Table 3. Comparison of the proposed compressed domain models with the state-of-
the-art models such as GAN-INT-CLS [20], StackGAN [27] and T2I-GAN [20] using
inception score measured in RGB domain on Oxford-102 dataset.

Model Input Domain Generator Output Inception Score

GAN-INT-CLS [20] RGB RGB 2.66 ± .03
StackGAN [27] RGB RGB 3.20 ± .01
T2I-GAN [20] RGB RGB 2.38 ± .17
T2CI-GAN Model-1 Compressed Compressed 1.42 ± .02
T2CI-GAN Model-2 RGB Compressed 2.01 ± .12

14 Bulla. Rajesh et al.

4.4 Comparative Study

The proposed T2CI-GAN models translate the text descriptions into compressed
domain images. Although there is no existing GAN framework that generates
compressed images directly from the input text, to compare our proposed mod-
els with state-of-the-art text to image GAN models, we first decompress the
generated compressed images to RGB domain, and then evaluate and compare
them with state-of-the-art models using Inception score. In Table 3, we can see
that inception score of the proposed models are low when compared with the
state-of-the-art models like GAN-INT-CLS [20], StackGAN [27] and T2I-GAN
[20] working in RGB domain because Inception score is usually calculated with
20k-50k images in the existing models. However, we train the model only with
2500 images and the corresponding captions to decrease the training time. So
the Inception score reported with the models is low.

5 Conclusion

In this paper, we achieve the objective of generating compressed versions of im-
ages directly from text descriptions instead of generating raw RGB images and
compressing it later as a post-processing step. We present two T2CI-GAN frame-
works that generate compressed versions of images. We demonstrate the training
and testing on Oxford flower-102 dataset. We observe a promising performance
by the proposed T2CI-GAN Model-2. The performance of the proposed T2CI-
GAN Model-1 is also satisfactory in compressed domain, but suffers to get the
qualitative uncompressed images. The proposed models can be further improved
by using the state-of-the-art text to image GAN models and optimization tech-
niques to improve the quality of generated images in the compressed domain.

References

1. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene
generation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 4561–4569 (2019)

2. Bell, T., Adjeroh, D., Mukherjee, A.: Pattern matching in compressed texts and
images (2001)

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

4. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks
straight from jpeg. In: Advances in Neural Information Processing Systems. pp.
3933–3944 (2018)

5. He, S., Liao, W., Yang, M.Y., Yang, Y., Song, Y.Z., Rosenhahn, B., Xiang, T.:
Context-aware layout to image generation with enhanced object appearance. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 15049–15058 (2021)

Title Suppressed Due to Excessive Length 15

6. Jason, B.: Tips for training stable generative adversar-
ial networks (2019), https://machinelearningmastery.com/

how-to-train-stable-generative-adversarial-networks/

7. Javed, M., Nagabhushan, P., Chaudhuri, B.B.: Extraction of line-word-character
segments directly from run-length compressed printed text-documents. In: 2013
Fourth National Conference on Computer Vision, Pattern Recognition, Image Pro-
cessing and Graphics (NCVPRIPG). pp. 1–4. IEEE (2013)

8. Javed, M., Nagabhushan, P., Chaudhuri, B.: Extraction of projection profile,
run-histogram and entropy features straight from run-length compressed text-
documents. arXiv preprint arXiv:1404.0627 (2014)

9. Javed, M., Nagabhushan, P., Chaudhuri, B.B.: A review on document image anal-
ysis techniques directly in the compressed domain. Artificial Intelligence Review
50(4), 539–568 (2018)

10. Javed, M., Nagabhushan, P., Chaudhuri, B.B.: A direct approach for word and
character segmentation in run-length compressed documents with an application
to word spotting. In: Document Analysis and Recognition (ICDAR), 2015 13th
International Conference on. pp. 216–220. IEEE (2015)

11. Kang, B., Tripathi, S., Nguyen, T.Q.: Generating images in compressed domain
using generative adversarial networks. IEEE Access 8, 180977–180991 (2020).
https://doi.org/10.1109/ACCESS.2020.3027800

12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

13. Mukhopadhyay, J.: Image and video processing in the compressed domain. Chap-
man and Hall/CRC (2011)

14. Nilsback, M.E., Zisserman, A.: 102 category flower dataset (2008), https://www.
robots.ox.ac.uk/~vgg/data/flowers/102/

15. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

16. Qiao, T., Zhang, J., Xu, D., Tao, D.: Mirrorgan: Learning text-to-image genera-
tion by redescription. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 1505–1514 (2019)

17. de Queiroz, R.L., Eschbach, R.: Fast segmentation of the jpeg-compressed docu-
ments. Journal of Electronic Imaging 7(2), 367–378 (1998)

18. Rajesh, B., Javed, M., Ratnesh, Srivastava, S.: Dct-compcnn: A novel image
classification network using jpeg compressed dct coefficients. In: 2019 IEEE
Conference on Information and Communication Technology. pp. 1–6 (2019).
https://doi.org/10.1109/CICT48419.2019.9066242

19. Rajesh, B., Javed, M., Nagabhushan, P.: Automatic tracing and extraction of text-
line and word segments directly in jpeg compressed document images. IET Image
Processing (04 2020)

20. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adver-
sarial text to image synthesis. In: International Conference on Machine Learning.
pp. 1060–1069. PMLR (2016)

21. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. Advances in neural information processing
systems 29, 2234–2242 (2016)

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

https://machinelearningmastery.com/how-to-train-stable-generative-adversarial-networks/
https://machinelearningmastery.com/how-to-train-stable-generative-adversarial-networks/
https://doi.org/10.1109/ACCESS.2020.3027800
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://doi.org/10.1109/CICT48419.2019.9066242

16 Bulla. Rajesh et al.

23. Tompkins, D.A., Kossentini, F.: A fast segmentation algorithm for bi-level image
compression using jbig2. In: Image Processing, 1999. ICIP 99. Proceedings. 1999
International Conference on. vol. 1, pp. 224–228. IEEE (1999)

24. Vovk, V.: The fundamental nature of the log loss function. In: Fields of Logic and
Computation II, pp. 307–318. Springer (2015)

25. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1316–1324 (2018)

26. Yin, G., Liu, B., Sheng, L., Yu, N., Wang, X., Shao, J.: Semantics disentangling
for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2327–2336 (2019)

27. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In: Proceedings of the IEEE international conference on computer vi-
sion. pp. 5907–5915 (2017)

	T2CI-GAN: Text to Compressed Image generation using Generative Adversarial Network

