Skip to main content

Auxiliary CNN for Graspability Modeling with 3D Point Clouds and Images for Robotic Grasping

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1777))

Included in the following conference series:

  • 405 Accesses

Abstract

Automatic object grasping is a challenging problem and has numerous applications in various fields. Currently, researchers have developed models that use only 3D point cloud data which is not sufficient to capture a complete grasping ability (graspability), because many visual features related to objects are missing in the 3D points. So here we propose an auxiliary convolutional neural network pipeline (CNN) for graspability modeling via simultaneously using visual information from RGBD images and 3D point clouds. For training the auxiliary CNN, we have created new dataset where the most graspable object has been placed in class 5, whereas the least graspable object has been placed in class 1. Our graspability modeling includes, 12 object features, where 9 are extracted from elliptic Fourier descriptors, the other 3 features are Euclidian distance from the centroid, compactness of an object and category of an object. We have thoroughly evaluated our proposed approach by incorporating it into state-of-the-art grasping method Graspnet [8], which has further improved the overall average grasp precision. Additionally, we performed an ablation study on various network elements and loss functions (cross entropy, mean square loss) for obtaining the best accuracy and graspability scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif, U., Tang, J., Harrer, S.: Ensemblenet: improving grasp detection using an ensemble of convolutional neural networks. In: BMVC, p. 10 (2018)

    Google Scholar 

  2. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091 (2018)

  3. Bailey, S.E., Lynch, J.M.: Diagnostic differences in mandibular p4 shape between neandertals and anatomically modern humans. Am. J. Phys. Anthropology Official Publication Am. Assoc. Phys. Anthropologists 126(3), 268–277 (2005)

    Google Scholar 

  4. Calli, B., et al.: Yale-cmu-berkeley dataset for robotic manipulation research. Int. J. Robot. Res. 36(3), 261–268 (2017)

    Article  Google Scholar 

  5. Chen, S.Y., Lestrel, P.E., Kerr, W.J.S., McColl, J.H.: Describing shape changes in the human mandible using elliptical fourier functions. Europ. J. Orthodontics 22(3), 205–216 (2000)

    Article  Google Scholar 

  6. Chu, F.J., Xu, R., Vela, P.A.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355–3362 (2018)

    Article  Google Scholar 

  7. Detry, R., Ek, C.H., Madry, M., Kragic, D.: Learning a dictionary of prototypical grasp-predicting parts from grasping experience. In: 2013 IEEE International Conference on Robotics and Automation, pp. 601–608. IEEE (2013)

    Google Scholar 

  8. Fang, H.S., Wang, C., Gou, M., Lu, C.: Graspnet-1billion: a large-scale benchmark for general object grasping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11444–11453 (2020)

    Google Scholar 

  9. Freeman, H.: Computer processing of line-drawing images. ACM Comput. Surv. (CSUR) 6(1), 57–97 (1974)

    Article  MATH  Google Scholar 

  10. Godefroy, J.E., Bornert, F., Gros, C.I., Constantinesco, A.: Elliptical fourier descriptors for contours in three dimensions: a new tool for morphometrical analysis in biology. C.R. Biol. 335(3), 205–213 (2012)

    Article  Google Scholar 

  11. Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Trans. Comput. 100(2), 195–201 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., Xi, N.: A hybrid deep architecture for robotic grasp detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1609–1614. IEEE (2017)

    Google Scholar 

  13. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from rgbd images: Learning using a new rectangle representation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3304–3311. IEEE (2011)

    Google Scholar 

  14. Jordan, J.: An overview of semantic image segmentation. Data Science, pp. 1–21 (2018)

    Google Scholar 

  15. Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4311. IEEE (2015)

    Google Scholar 

  16. Kuhl, F.P., Giardina, C.R.: Elliptic fourier features of a closed contour. Comput. Graphics Image Process. 18(3), 236–258 (1982)

    Article  Google Scholar 

  17. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  18. Lestrel, P.E.: Fourier descriptors and their applications in biology. Cambridge University Press (1997)

    Google Scholar 

  19. Lestrel, P.E., Kerr, W.J.S.: Quantification of function regulator therapy using elliptical fourier functions. Europ. J. Orthodontics 15(6), 481–491 (1993)

    Article  Google Scholar 

  20. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4–5), 421–436 (2018)

    Article  Google Scholar 

  21. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on x-transformed points. Advances in neural information processing systems 31 (2018)

    Google Scholar 

  22. Liang, H., et al.: Pointnetgpd: detecting grasp configurations from point sets. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3629–3635. IEEE (2019)

    Google Scholar 

  23. Mahler, J., et al.: Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312 (2017)

  24. Morrison, D., Corke, P., Leitner, J.: Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach. arXiv preprint arXiv:1804.05172 (2018)

  25. Park, D., Seo, Y., Shin, D., Choi, J., Chun, S.Y.: A single multi-task deep neural network with post-processing for object detection with reasoning and robotic grasp detection. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7300–7306. IEEE (2020)

    Google Scholar 

  26. ten Pas, A., Gualtieri, M., Saenko, K., Platt, R.: Grasp pose detection in point clouds. Int. J. Robot. Res. 36(13–14), 1455–1473 (2017)

    Google Scholar 

  27. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50k tries and 700 robot hours. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3413. IEEE (2016)

    Google Scholar 

  28. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  30. Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

    Google Scholar 

  31. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3d outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)

    Google Scholar 

  32. Ten Pas, A., Platt, R.: Using geometry to detect grasp poses in 3d point clouds. In: Robotics Research, pp. 307–324. Springer (2018)

    Google Scholar 

  33. Wallace, T.P., Wintz, P.A.: An efficient three-dimensional aircraft recognition algorithm using normalized fourier descriptors. Comput. Graphics Image Process. 13(2), 99–126 (1980)

    Article  Google Scholar 

  34. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Varun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varun, P., Behera, L., Sandhan, T. (2023). Auxiliary CNN for Graspability Modeling with 3D Point Clouds and Images for Robotic Grasping. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31417-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31416-2

  • Online ISBN: 978-3-031-31417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics