Skip to main content

MTFL: Multi-task Federated Learning for Classification of Healthcare X-Ray Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

Deep learning models have achieved state-of-the-art in many challenging domains, whereas it is a data-hungry method. Collecting sensitive and labelled medical data sets is challenging and costly. Recently, federated learning has been used to train a model without sharing the data at a central place for a single task. We propose a novel Multi-task federated learning (MTFL) approach to utilize the data sets of various similar kinds of tasks. We used two binary class X-ray data sets: Pneumonia disease classification and TB disease classification. We compared MTFL with federated learning for a single task and CNN with data in one place. Results show that MTFL has achieved better specificity and accuracy than other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., Guizani, M.: A survey on federated learning: the journey from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 8(7), 5476–5497 (2021). https://doi.org/10.1109/JIOT.2020.3030072

    Article  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, vol. 19 (2006)

    Google Scholar 

  3. Beguier, C., Terrail, J.O.d., Meah, I., Andreux, M., Tramel, E.W.: Differentially private federated learning for cancer prediction. arXiv preprint arXiv:2101.02997 (2021)

  4. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inform. 112, 59–67 (2018)

    Article  Google Scholar 

  5. Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., Yang, Y.: Diagnose like a radiologist: attention guided convolutional neural network for thorax disease classification. arXiv preprint arXiv:1801.09927 (2018)

  6. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  7. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Therapy 8 (2015)

    Google Scholar 

  8. Islam, M.T., Aowal, M.A., Minhaz, A.T., Ashraf, K.: Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv preprint arXiv:1705.09850 (2017)

  9. Kumar, P., Grewal, M., Srivastava, M.M.: Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 546–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_62

    Chapter  Google Scholar 

  10. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284(2), 574–582 (2017)

    Article  Google Scholar 

  11. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)

    Article  Google Scholar 

  12. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  13. Mooney, P.: Chest x-ray images (pneumonia) (2021). https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

  14. Nafisah, S.I., Muhammad, G.: Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput. Appl. 1–21 (2022)

    Google Scholar 

  15. Pfitzner, B., Steckhan, N., Arnrich, B.: Federated learning in a medical context: a systematic literature review. ACM Trans. Internet Technol. (TOIT) 21(2), 1–31 (2021)

    Article  Google Scholar 

  16. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  17. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  18. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  19. Singh, P.P., Prasad, S., Chaudhary, A.K., Patel, C.K., Debnath, M.: Classification of effusion and cartilage erosion affects in osteoarthritis knee MRI images using deep learning model. In: Nain, N., Vipparthi, S.K., Raman, B. (eds.) CVIP 2019. CCIS, vol. 1148, pp. 373–383. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4018-9_34

    Chapter  Google Scholar 

  20. Standley, T., Zamir, A.R., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? (2019). https://doi.org/10.48550/ARXIV.1905.07553, https://arxiv.org/abs/1905.07553

  21. Tawsifur Rahman, Muhammad Chowdhury, A.K.: Tuberculosis (tb) chest x-ray database (2021). https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset

  22. Xu, J., Glicksberg, B.S., Su, C., Walker, P., Bian, J., Wang, F.: Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5(1), 1–19 (2021)

    Article  Google Scholar 

  23. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl.-Based Syst. 216, 106775 (2021). https://doi.org/10.1016/j.knosys.2021.106775, https://www.sciencedirect.com/science/article/pii/S0950705121000381

  24. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 1 (2021). https://doi.org/10.1109/TKDE.2021.3070203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajeet Kumar Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Sinha, I.K., Singh, K.P. (2023). MTFL: Multi-task Federated Learning for Classification of Healthcare X-Ray Images. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31417-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31416-2

  • Online ISBN: 978-3-031-31417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics