Skip to main content

Detection of Narrow River Trails with the Presence of Highways from Landsat 8 OLI Images

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2022)

Abstract

River is one of the most important land classes of our environment and civilization since the ancient times. Several factors including excessive river sedimentation, industrial waste, illegal mining, affect the river health to the extent of narrower river trails, change of courses, and different levels of water pollution. Hence, monitoring of river health has become a crucial issue, where remote sensing based observations are applied in recent times. There are several indexes to detect water bodies from multispectral images. However, detecting and isolating rivers, especially narrow rivers are found challenging. Further, higher degree of sinuosity triggers the change of river direction and narrowness of the river width. Due to this narrowness, a complete river trail appears as segments of disconnected trails. Additionally, the spectral properties of narrow river trails are found to be similar to different land classes, especially highways, when these indexes are used. In this work, we have proposed a novel technique to detect narrow river trails based on the spatial features and pixel associativity with the presence of highways without labelled dataset. The spatial texture of narrow river trails is assumed different from most of the other land classes detected in these water indexes. The roads, which are comprehensible from mid-resolution satellite images, are generally highways and have less sinuosity. These characteristics are considered here to separate narrow river trails from those land classes having near similar spectral characteristics. The proposed technique has precision, recall and accuracy of \(84.52\%\), \(71.51\%\), and \(96.97\%\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, T.D., Lee, D.H., Yang, I.T., Lee, J.K.: Identification of water bodies in a Landsat 8 OLI image using a j48 decision tree. Sensors 16(7), 1075 (2016)

    Article  Google Scholar 

  2. Benstead, J.P., Leigh, D.S.: An expanded role for river networks. Nat. Geosci. 5(10), 678–679 (2012)

    Article  Google Scholar 

  3. Berlemont, S., Olivo-Marin, J.C.: Combining local filtering and multiscale analysis for edge, ridge, and curvilinear objects detection. IEEE Trans. Image Process. 19(1), 74–84 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

  5. De, J., et al.: A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Trans. Med. Imaging 35(1), 257–272 (2015)

    Article  Google Scholar 

  6. Du, Z., et al.: Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 5(7), 672–681 (2014)

    Article  Google Scholar 

  7. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35 (2014)

    Article  Google Scholar 

  8. Fisher, A., Flood, N., Danaher, T.: Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 175, 167–182 (2016)

    Article  Google Scholar 

  9. Gao, R., Bischof, W.F.: Detection of linear structures in remote-sensed images. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 896–905. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02611-9_88

    Chapter  Google Scholar 

  10. Güneralp, İ, Filippi, A.M., Hales, B.U.: River-flow boundary delineation from digital aerial photography and ancillary images using support vector machines. GIScience Remote Sens. 50(1), 1–25 (2013)

    Article  Google Scholar 

  11. Ji, L., Zhang, L., Wylie, B.: Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote. Sens. 75(11), 1307–1317 (2009)

    Article  Google Scholar 

  12. Kenward, T., Lettenmaier, D.P., Wood, E.F., Fielding, E.: Effects of digital elevation model accuracy on hydrologic predictions. Remote Sens. Environ. 74(3), 432–444 (2000)

    Article  Google Scholar 

  13. Klemenjak, S., Waske, B., Valero, S., Chanussot, J.: Automatic detection of rivers in high-resolution SAR data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5(5), 1364–1372 (2012)

    Article  Google Scholar 

  14. Li, J., Wong, D.W.: Effects of dem sources on hydrologic applications. Comput. Environ. Urban Syst. 34(3), 251–261 (2010)

    Article  Google Scholar 

  15. Li, S., MacMillan, R., Lobb, D.A., McConkey, B.G., Moulin, A., Fraser, W.R.: Lidar dem error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada. Geomorphology 129(3–4), 263–275 (2011)

    Article  Google Scholar 

  16. Liu, J.L., Feng, D.Z.: Two-dimensional multi-pixel anisotropic gaussian filter for edge-line segment (els) detection. Image Vis. Comput. 32(1), 37–53 (2014)

    Article  Google Scholar 

  17. Liu, Z., Yao, Z., Wang, R.: Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environ. Earth Sci. 75(10), 1–13 (2016). https://doi.org/10.1007/s12665-016-5686-2

    Article  Google Scholar 

  18. Liu, Z., Khan, U., Sharma, A.: A new method for verification of delineated channel networks. Water Resour. Res. 50(3), 2164–2175 (2014)

    Article  Google Scholar 

  19. Manthalkar, R., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture classification using even symmetric Gabor filters. Pattern Recogn. Lett. 24(12), 2061–2068 (2003)

    Article  Google Scholar 

  20. Marcus, W.A., Fonstad, M.A.: Remote sensing of rivers: the emergence of a subdiscipline in the river sciences. Earth Surf. Proc. Land. 35(15), 1867–1872 (2010)

    Article  Google Scholar 

  21. Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2010)

    Article  Google Scholar 

  22. McFeeters, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425–1432 (1996)

    Article  Google Scholar 

  23. Özelkan, E.: Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Pol. J. Environ. Stud. 29(2), 1759–1769 (2020)

    Article  Google Scholar 

  24. Pavelsky, T.M., et al.: Assessing the potential global extent of Swot river discharge observations. J. Hydrol. 519, 1516–1525 (2014)

    Article  Google Scholar 

  25. Rinne, E., et al.: On the recent elevation changes at the Flade Isblink ice cap, northern greenland. J. Geophys. Res. Earth Surf. 116(F3), 9 (2011)

    Google Scholar 

  26. Shahi, K., Shafri, H.Z., Taherzadeh, E., Mansor, S., Muniandy, R.: A novel spectral index to automatically extract road networks from worldview-2 satellite imagery. Egypt. J. Remote Sens. Space Sci. 18(1), 27–33 (2015)

    Google Scholar 

  27. Verpoorter, C., Kutser, T., Tranvik, L.: Automated mapping of water bodies using Landsat multispectral data. Limnol. Oceanogr. Methods 10(12), 1037–1050 (2012)

    Article  Google Scholar 

  28. Van de Weijer, J., Van Vliet, L.J., Verbeek, P.W., van Ginkel, R.: Curvature estimation in oriented patterns using curvilinear models applied to gradient vector fields. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 1035–1042 (2001)

    Article  Google Scholar 

  29. Xu, H.: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27(14), 3025–3033 (2006)

    Article  Google Scholar 

  30. Yang, K., Li, M., Liu, Y., Cheng, L., Huang, Q., Chen, Y.: River detection in remotely sensed imagery using Gabor filtering and path opening. Remote Sensing 7(7), 8779–8802 (2015)

    Article  Google Scholar 

  31. Zhang, H., Yang, Y., Shen, H.: Detection of curvilinear structure in images by a multi-centered Hough forest method. IEEE Access 6, 22684–22694 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, J., Gupta, P., Gautam, H., Chintalapati, R. (2023). Detection of Narrow River Trails with the Presence of Highways from Landsat 8 OLI Images. In: Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science, vol 1777. Springer, Cham. https://doi.org/10.1007/978-3-031-31417-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31417-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31416-2

  • Online ISBN: 978-3-031-31417-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics