Abstract
With the development of blockchain technology, consortium blockchain is being applied in various scenarios. However, data and related assets are restricted to the closed consortium blockchain environment, and the end-users who do not belong to the consortium are difficult to gain access without extra authentication. Thus, architectures concerning cross-chain interaction appear, while most solutions have only limited functionalities. Moreover, few solutions have considered privacy from multiple perspectives, including the privacy of end-users, consortium members, or the data itself. This paper proposes a privacy-preserving and auditable architecture scheme for interfacing consortium blockchain members with end-users of the public blockchain. Our scheme enables end-users to communicate with the inner consortium in a verifiable, privacy-preserving, and auditable manner. More specifically, we improve the existing cross-chain network architectures to further protect the consortium members’ privacy. Also, the communication and the transactions of the cross-chain interaction are protected and auditable. Concrete protocols are proposed, and security models and corresponding analyses are investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abebe, E., et al.: Enabling enterprise blockchain interoperability with trusted data transfer (industry track). In: Proceedings of the 20th International Middleware Conference Industrial Track, pp. 29–35 (2019)
Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)
Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716_9
Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: 2016 2nd International Conference on Open and Big Data (OBD), pp. 25–30. IEEE (2016)
Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., Juels, A.: Tesseract: real-time cryptocurrency exchange using trusted hardware. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1521–1538 (2019)
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)
Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 315–334. IEEE (2018)
Cash, M., Bassiouni, M.: Two-tier permission-ed and permission-less blockchain for secure data sharing. In: 2018 IEEE International Conference on Smart Cloud (SmartCloud), pp. 138–144. IEEE (2018)
Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OsDI, vol. 99, pp. 173–186 (1999)
Chainalysis: The 2020 state of crypto crime. https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf. Accessed 24 Sept 2022
Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24
Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a cryptographic investigation of mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 657–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_22
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21
Ghosh, B.C., Bhartia, T., Addya, S.K., Chakraborty, S.: Leveraging public-private blockchain interoperability for closed consortium interfacing. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2021, pp. 1–10. IEEE (2021)
Huang, H., et al.: Brokerchain: a cross-shard blockchain protocol for account/balance-based state sharding. In: IEEE INFOCOM (2022)
Jivanyan, A.: Lelantus: towards confidentiality and anonymity of blockchain transactions from standard assumptions. IACR Cryptology ePrint Archive 2019, 373 (2019)
Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from computational Diffie-Hellman in cryptographic groups. J. Cryptol. 16(4), 239–247 (2003)
Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)
Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: scaling private payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–48 (2019)
Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 9–14 (2017)
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005). https://doi.org/10.1007/11424826_65
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. Cryptology ePrint Archive (2018)
Morgan, J.: Virtuozzo. https://www.virtuozzo.com/. Accessed 24 Sept 2022
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review, p. 21260 (2008)
Noether, S., Goodell, B.: Triptych: logarithmic-sized linkable ring signatures with applications. In: Garcia-Alfaro, J., Navarro-Arribas, G., Herrera-Joancomarti, J. (eds.) DPM/CBT -2020. LNCS, vol. 12484, pp. 337–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66172-4_22
Shahsavari, Y., Zhang, K., Talhi, C.: A theoretical model for fork analysis in the bitcoin network. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 237–244. IEEE (2019)
Soliditylang.org: Solidity. https://soliditylang.org/. Accessed 24 Sept 2022
Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25
Van Saberhagen, N.: Cryptonote v 2.0 (2013)
Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)
Wüst, K., Kostiainen, K., Čapkun, V., Čapkun, S.: PRCash: fast, private and regulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 158–178. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_11
Xu, X., Rahman, F., Shakya, B., Vassilev, A., Forte, D., Tehranipoor, M.: Electronics supply chain integrity enabled by blockchain. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(3), 1–25 (2019)
Yuen, T.H.: PAChain: private, authenticated & auditable consortium blockchain and its implementation. Futur. Gener. Comput. Syst. 112, 913–929 (2020)
Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_25
Zamyatin, A., et al.: SoK: communication across distributed ledgers. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 3–36. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_1
Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A blockchain based witness model for trustworthy cloud service level agreement enforcement. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2019, pp. 1567–1575. IEEE (2019)
Acknowledgement
This work has been partly supported by the Fundamentral Research Funds for the Central Universities (No. 30106220482).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Lu, Z., Chen, J. (2023). A Privacy-Preserving and Auditable Scheme for Interfacing Public Blockchain with Consortium Blockchain. In: Meng, W., Li, W. (eds) Blockchain Technology and Emerging Technologies. BlockTEA 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-31420-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-31420-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31419-3
Online ISBN: 978-3-031-31420-9
eBook Packages: Computer ScienceComputer Science (R0)