Skip to main content

A Privacy-Preserving and Auditable Scheme for Interfacing Public Blockchain with Consortium Blockchain

  • Conference paper
  • First Online:
Blockchain Technology and Emerging Technologies (BlockTEA 2022)

Abstract

With the development of blockchain technology, consortium blockchain is being applied in various scenarios. However, data and related assets are restricted to the closed consortium blockchain environment, and the end-users who do not belong to the consortium are difficult to gain access without extra authentication. Thus, architectures concerning cross-chain interaction appear, while most solutions have only limited functionalities. Moreover, few solutions have considered privacy from multiple perspectives, including the privacy of end-users, consortium members, or the data itself. This paper proposes a privacy-preserving and auditable architecture scheme for interfacing consortium blockchain members with end-users of the public blockchain. Our scheme enables end-users to communicate with the inner consortium in a verifiable, privacy-preserving, and auditable manner. More specifically, we improve the existing cross-chain network architectures to further protect the consortium members’ privacy. Also, the communication and the transactions of the cross-chain interaction are protected and auditable. Concrete protocols are proposed, and security models and corresponding analyses are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abebe, E., et al.: Enabling enterprise blockchain interoperability with trusted data transfer (industry track). In: Proceedings of the 20th International Middleware Conference Industrial Track, pp. 29–35 (2019)

    Google Scholar 

  2. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)

  3. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 101–115. Springer, Heidelberg (2006). https://doi.org/10.1007/11774716_9

    Chapter  Google Scholar 

  4. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: 2016 2nd International Conference on Open and Big Data (OBD), pp. 25–30. IEEE (2016)

    Google Scholar 

  5. Bentov, I., Ji, Y., Zhang, F., Breidenbach, L., Daian, P., Juels, A.: Tesseract: real-time cryptocurrency exchange using trusted hardware. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 1521–1538 (2019)

    Google Scholar 

  6. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)

    Google Scholar 

  9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 315–334. IEEE (2018)

    Google Scholar 

  10. Cash, M., Bassiouni, M.: Two-tier permission-ed and permission-less blockchain for secure data sharing. In: 2018 IEEE International Conference on Smart Cloud (SmartCloud), pp. 138–144. IEEE (2018)

    Google Scholar 

  11. Castro, M., Liskov, B., et al.: Practical Byzantine fault tolerance. In: OsDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  12. Chainalysis: The 2020 state of crypto crime. https://go.chainalysis.com/rs/503-FAP-074/images/2020-Crypto-Crime-Report.pdf. Accessed 24 Sept 2022

  13. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24

    Chapter  Google Scholar 

  14. Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a cryptographic investigation of mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 657–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_22

    Chapter  Google Scholar 

  15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21

    Chapter  Google Scholar 

  16. Ghosh, B.C., Bhartia, T., Addya, S.K., Chakraborty, S.: Leveraging public-private blockchain interoperability for closed consortium interfacing. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2021, pp. 1–10. IEEE (2021)

    Google Scholar 

  17. Huang, H., et al.: Brokerchain: a cross-shard blockchain protocol for account/balance-based state sharding. In: IEEE INFOCOM (2022)

    Google Scholar 

  18. Jivanyan, A.: Lelantus: towards confidentiality and anonymity of blockchain transactions from standard assumptions. IACR Cryptology ePrint Archive 2019, 373 (2019)

    Google Scholar 

  19. Joux, A., Nguyen, K.: Separating decision Diffie-Hellman from computational Diffie-Hellman in cryptographic groups. J. Cryptol. 16(4), 239–247 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  21. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: OmniLedger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

    Google Scholar 

  22. Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: scaling private payments without trusted setup. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–48 (2019)

    Google Scholar 

  23. Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private industrial blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 9–14 (2017)

    Google Scholar 

  24. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28

    Chapter  Google Scholar 

  25. Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005). https://doi.org/10.1007/11424826_65

    Chapter  Google Scholar 

  26. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. Cryptology ePrint Archive (2018)

    Google Scholar 

  27. Morgan, J.: Virtuozzo. https://www.virtuozzo.com/. Accessed 24 Sept 2022

  28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review, p. 21260 (2008)

    Google Scholar 

  29. Noether, S., Goodell, B.: Triptych: logarithmic-sized linkable ring signatures with applications. In: Garcia-Alfaro, J., Navarro-Arribas, G., Herrera-Joancomarti, J. (eds.) DPM/CBT -2020. LNCS, vol. 12484, pp. 337–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66172-4_22

    Chapter  Google Scholar 

  30. Shahsavari, Y., Zhang, K., Talhi, C.: A theoretical model for fork analysis in the bitcoin network. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 237–244. IEEE (2019)

    Google Scholar 

  31. Soliditylang.org: Solidity. https://soliditylang.org/. Accessed 24 Sept 2022

  32. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  33. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

    Google Scholar 

  34. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  35. Wüst, K., Kostiainen, K., Čapkun, V., Čapkun, S.: PRCash: fast, private and regulated transactions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp. 158–178. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7_11

    Chapter  Google Scholar 

  36. Xu, X., Rahman, F., Shakya, B., Vassilev, A., Forte, D., Tehranipoor, M.: Electronics supply chain integrity enabled by blockchain. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 24(3), 1–25 (2019)

    Article  Google Scholar 

  37. Yuen, T.H.: PAChain: private, authenticated & auditable consortium blockchain and its implementation. Futur. Gener. Comput. Syst. 112, 913–929 (2020)

    Article  Google Scholar 

  38. Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_25

    Chapter  Google Scholar 

  39. Zamyatin, A., et al.: SoK: communication across distributed ledgers. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 3–36. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_1

    Chapter  Google Scholar 

  40. Zhou, H., Ouyang, X., Ren, Z., Su, J., de Laat, C., Zhao, Z.: A blockchain based witness model for trustworthy cloud service level agreement enforcement. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2019, pp. 1567–1575. IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

This work has been partly supported by the Fundamentral Research Funds for the Central Universities (No. 30106220482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiageng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Chen, J. (2023). A Privacy-Preserving and Auditable Scheme for Interfacing Public Blockchain with Consortium Blockchain. In: Meng, W., Li, W. (eds) Blockchain Technology and Emerging Technologies. BlockTEA 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 498. Springer, Cham. https://doi.org/10.1007/978-3-031-31420-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31420-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31419-3

  • Online ISBN: 978-3-031-31420-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics