Skip to main content

Spatio-temporal Attention Graph Convolutions for Skeleton-based Action Recognition

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13885))

Included in the following conference series:

Abstract

In skeleton-based action recognition, graph convolutional networks (GCN) have been applied to extract features based on the dynamic of the human body and the method has achieved excellent results recently. However, GCN-based techniques only focus on the spatial correlations between human joints and often overlook the temporal relationships. In an action sequence, the consecutive frames in a neighborhood contain similar poses and using only temporal convolutions for extracting local features limits the flow of useful information into the calculations. In many cases, the discriminative features can present in long-range time steps and it is important to also consider them in the calculations to create stronger representations. We propose an attentional graph convolutional network, which adapts self-attention mechanisms to respectively model the correlations between human joints and between every time steps for skeleton-based action recognition. On two common datasets, the NTU-RGB+D60 and the NTU-RGB+D120, the proposed method achieved competitive classification results compared to state-of-the-art methods. The project’s GitHub page: STA-GCN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13359–13368 (2021)

    Google Scholar 

  2. Chi, H.G., Ha, M.H., Chi, S., Lee, S.W., Huang, Q., Ramani, K.: INFOGCN: representation learning for human skeleton-based action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20186–20196 (2022)

    Google Scholar 

  3. Gao, R., Liu, X., Yang, J., Yue, H.: CDCLR: llip-driven contrastive learning for skeleton-based action recognition. In: 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE (2022)

    Google Scholar 

  4. Hamilton, W.L.: Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 14(3), 1–159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3d action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4570–4579 (2017)

    Google Scholar 

  6. Kim, T.S., Reiter, A.: Interpretable 3d human action analysis with temporal convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1623–1631 (2017)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  8. Koniusz, P., Cherian, A., Porikli, F.: Tensor representations via kernel linearization for action recognition from 3D skeletons. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 37–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_3

    Chapter  Google Scholar 

  9. Li, M., Chen, S., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Actional-structural graph convolutional networks for skeleton-based action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3590–3598 (2019)

    Google Scholar 

  10. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: Ntu rgb+d 120: a large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 42(10), 2684–2701 (2020)

    Article  Google Scholar 

  11. Liu, J., Shahroudy, A., Xu, D., Kot, A.C., Wang, G.: Skeleton-based action recognition using spatio-temporal LSTM network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 40(12), 3007–3021 (2018)

    Article  Google Scholar 

  12. Liu, X., Shi, H., Chen, H., Yu, Z., Li, X., Zhao, G.: imigue: an identity-free video dataset for micro-gesture understanding and emotion analysis. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10631–10642 (2021)

    Google Scholar 

  13. Liu, X., Shi, H., Hong, X., Chen, H., Tao, D., Zhao, G.: Hidden states exploration for 3d skeleton-based gesture recognition. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1846–1855 (2019)

    Google Scholar 

  14. Liu, X., Shi, H., Hong, X., Chen, H., Tao, D., Zhao, G.: 3d skeletal gesture recognition via hidden states exploration. IEEE Trans. Image Process. 29, 4583–4597 (2020)

    Article  MATH  Google Scholar 

  15. Liu, X., Zhao, G.: 3d skeletal gesture recognition via discriminative coding on time-warping invariant riemannian trajectories. IEEE Trans. Multimedia 23, 1841–1854 (2021)

    Article  Google Scholar 

  16. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 140–149 (2020)

    Google Scholar 

  17. Plizzari, C., Cannici, M., Matteucci, M.: Spatial temporal transformer network for skeleton-based action recognition. In: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, Part III, pp. 694–701 (2021)

    Google Scholar 

  18. Qin, X., Cai, R., Yu, J., He, C., Zhang, X.: An efficient self-attention network for skeleton-based action recognition. Sci. Rep. 12, 2045–2322 (2022)

    Article  Google Scholar 

  19. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+d: a large scale dataset for 3d human activity analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1010–1019 (2016)

    Google Scholar 

  20. Shi, H., Peng, W., Chen, H., Liu, X., Zhao, G.: Multiscale 3d-shift graph convolution network for emotion recognition from human actions. IEEE Intell. Syst. 37(4), 103–110 (2022)

    Article  Google Scholar 

  21. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12018–12027 (2019)

    Google Scholar 

  22. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition. In: Asian Conference on Computer Vision (ACCV), pp. 38–53 (2020)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: International Conference on Neural Information Processing Systems (NIPS), pp. 6000–6010 (2017)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  25. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3d skeletons as points in a lie group. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 588–595 (2014)

    Google Scholar 

  26. Wang, H., Wang, L.: Modeling temporal dynamics and spatial configurations of actions using two-stream recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3633–3642 (2017)

    Google Scholar 

  27. Wang, L., Huynh, D.Q., Koniusz, P.: A comparative review of recent kinect-based action recognition algorithms. IEEE Trans. Image Process. 29, 15–28 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI Conference on Artificial Intelligence, pp. 3482–3489 (2018)

    Google Scholar 

  29. Ye, F., Pu, S., Zhong, Q., Li, C., Xie, D., Tang, H.: Dynamic GCN: context-enriched topology learning for skeleton-based action recognition. In: ACM International Conference on Multimedia, pp. 55–63 (2020)

    Google Scholar 

  30. Yu, Z., et al.: Searching multi-rate and multi-modal temporal enhanced networks for gesture recognition. IEEE Trans. Image Process. 30, 5626–5640 (2021)

    Article  Google Scholar 

  31. Zhang, X., Xu, C., Tao, D.: Context aware graph convolution for skeleton-based action recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14321–14330 (2020)

    Google Scholar 

  32. Zhang, Y., Wu, B., Li, W., Duan, L., Gan, C.: STST: Spatial-temporal specialized transformer for skeleton-based action recognition. In: ACM International Conference on Multimedia, pp. 3229–3237 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, C., Liu, X. (2023). Spatio-temporal Attention Graph Convolutions for Skeleton-based Action Recognition. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics