Skip to main content

RELIEF: Joint Low-Light Image Enhancement and Super-Resolution with Transformers

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13885))

Included in the following conference series:

  • 582 Accesses

Abstract

The goal of Single-Image Super-Resolution (SISR) is to reconstruct a High-Resolution (HR) version of a degraded Low-Resolution (LR) image. Existing Super-Resolution (SR) methods mostly assume that the LR image is a result of blurring and downsampling the HR image, while in reality LR images are often degraded by additional factors such as low-light, low-contrast, noise, and color distortion. Due to this, current State-of-the-Art (SoTA) SR methods cannot reconstruct real low-light low-resolution images, and a straightforward strategy is, therefore, to first perform Low-Light Enhancement (LLE), followed by SR, using dedicated methods for each task. Unfortunately, this approach leads to poor performance, which motivates us to propose a method for joint LLE and SR. However, since LLE and SR are both ill-posed and ill-conditioned inverse problems, the joint reconstruction task becomes highly challenging, which calls for efficient ways to leverage as much as possible of the available information in the degraded image during reconstruction. In this paper, we propose REsolution and LIght Enhancement transFormer (RELIEF), a novel Transformer-based multi-scale hierarchical encoder-decoder network with efficient cross-shaped attention mechanisms that can extract informative features from large training patches due to its strong long-range dependency modeling capabilities. This in turn leads to significant improvements in reconstruction performance on real Low-Light Low-Resolution (LLLR) images. We evaluate our method on two publicly available datasets and present SoTA results on both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/cszn/KAIR/blob/master/options/swinir/train_swinir_sr_realworld_x4_psnr.json.

References

  1. Aakerberg, A., Nasrollahi, K., Moeslund, T.B.: RELLISUR: a real low-light image super-resolution dataset. In: NeurIPS (2021)

    Google Scholar 

  2. Andreas Lugmayr et al.: Ntire 2020 challenge on real-world image super-resolution: methods and results. In: CVPRW (2020)

    Google Scholar 

  3. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)

    Google Scholar 

  4. Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The 2018 PIRM challenge on perceptual image super-resolution. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 334–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_21

    Chapter  Google Scholar 

  5. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. TIP (2018)

    Google Scholar 

  6. Cai, Y., et al.: Learning delicate local representations for multi-person pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 455–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_27

    Chapter  Google Scholar 

  7. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  8. Chen, Y., Wang, Y., Kao, M., Chuang, Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: CVPR (2018)

    Google Scholar 

  9. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: CVPR (2017)

    Google Scholar 

  10. Chu, X., et al.: Conditional positional encodings for vision transformers (2021)

    Google Scholar 

  11. Coltuc, D., Bolon, P., Chassery, J.: Exact histogram specification. TIP (2006)

    Google Scholar 

  12. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity (2020)

    Google Scholar 

  13. Dong, C., Loy, C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38, 295–307 (2016)

    Article  Google Scholar 

  14. Dong, X., et al.: CSWIN transformer: a general vision transformer backbone with cross-shaped windows (2021)

    Google Scholar 

  15. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.S., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. TIP 24, 4965–4977 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Guo, K., et al.: Deep illumination-enhanced face super-resolution network for low-light images. In: TOMM (2022)

    Google Scholar 

  17. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. TIP 26, 982–993 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Han, T.Y., Kim, Y.J., Song, B.C.: Convolutional neural network-based infrared image super resolution under low light environment. In: EUSIPCO (2017)

    Google Scholar 

  19. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus) (2016)

    Google Scholar 

  20. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. TIP 30, 2340–2349 (2021)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  22. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  23. Kim, T.H., Sajjadi, M.S.M., Hirsch, M., Schölkopf, B.: Spatio-temporal transformer network for video restoration. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 111–127. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_7

    Chapter  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  25. Klatzer, T., Hammernik, K., Knöbelreiter, P., Pock, T.: Learning joint demosaicing and denoising based on sequential energy minimization. In: ICCP (2016)

    Google Scholar 

  26. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  27. Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., Tu, Z.: Pose recognition with cascade transformers. In: CVPR (2021)

    Google Scholar 

  28. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: ICCVW (2021)

    Google Scholar 

  29. Liang, Z., Zhang, D., Shao, J.: Jointly solving deblurring and super-resolution problems with dual supervised network. In: ICME (2019)

    Google Scholar 

  30. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  31. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows (2021)

    Google Scholar 

  32. Lore, K.G., Akintayo, A., Sarkar, S.: Llnet: a deep autoencoder approach to natural low-light image enhancement (2017)

    Google Scholar 

  33. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Learning the degradation distribution for blind image super-resolution. In: CVPR (2022)

    Google Scholar 

  34. Ma, C., Yan, B., Tan, W., Jiang, X.: Perception-oriented stereo image super-resolution. In: ACM MM (2021)

    Google Scholar 

  35. Ma, L., Liu, R., Wang, Y., Fan, X., Luo, Z.: Low-light image enhancement via self-reinforced retinex projection model. IEEE Trans. Multimedia (2022)

    Google Scholar 

  36. Nasrollahi, K., Moeslund, T.B.: Super-resolution: A comprehensive survey. In: Mach. Vision Appl. (2014)

    Google Scholar 

  37. Qin, Q., Yan, J., Wang, Q., Wang, X., Li, M., Wang, Y.: Etdnet: An efficient transformer deraining model. In: IEEE Access (2021)

    Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. Sajjadi, M.S.M., Schölkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV (2017)

    Google Scholar 

  40. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. In: NAACL-HLT (2018)

    Google Scholar 

  41. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  42. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. TIP 9, 889–896 (2000)

    Google Scholar 

  43. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B.A., Shlens, J.: Scaling local self-attention for parameter efficient visual backbones. In: CVPR (2021)

    Google Scholar 

  44. Vaswani, A., et al.: In: NeurIPS (2017)

    Google Scholar 

  45. Wang, S., Zheng, J., Hu, H., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. TIP 22, 3538–3548 (2013)

    Google Scholar 

  46. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions (2021)

    Google Scholar 

  47. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data (2021)

    Google Scholar 

  48. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Loy, C.C.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2019)

    Google Scholar 

  49. Wang, Z., Bovik, A.C., Sheikh, H.R.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  50. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light enhancement. In: BMVC (2018)

    Google Scholar 

  51. Wu, H., et al.: CVT: introducing convolutions to vision transformers (2021)

    Google Scholar 

  52. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers (2021)

    Google Scholar 

  53. Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers (2021)

    Google Scholar 

  54. Ying, C., Zhao, P., Li, Y.: Low-light-level image super-resolution reconstruction based on iterative projection photon localization algorithm. J. Electron. Imaging 27, 013026 (2018)

    Article  Google Scholar 

  55. Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating convolution designs into visual transformers (2021)

    Google Scholar 

  56. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30

    Chapter  Google Scholar 

  57. Zhang, K., Liang, J., Gool, L.V., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution (2021)

    Google Scholar 

  58. Zhang, P., et al.: Multi-scale vision longformer: a new vision transformer for high-resolution image encoding (2021)

    Google Scholar 

  59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  60. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM MM (2019)

    Google Scholar 

  61. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  62. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  63. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR (2021)

    Google Scholar 

  64. Zhou, R., El Helou, M., Sage, D., Laroche, T., Seitz, A., Süsstrunk, S.: W2S: microscopy data with joint denoising and super-resolution for widefield to SIM mapping. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 474–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_31

    Chapter  Google Scholar 

  65. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

  66. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Aakerberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aakerberg, A., Nasrollahi, K., Moeslund, T.B. (2023). RELIEF: Joint Low-Light Image Enhancement and Super-Resolution with Transformers. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics