Skip to main content

Fashion CUT: Unsupervised Domain Adaptation for Visual Pattern Classification in Clothes Using Synthetic Data and Pseudo-labels

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Accurate product information is critical for e-commerce stores to allow customers to browse, filter, and search for products. Product data quality is affected by missing or incorrect information resulting in poor customer experience. While machine learning can be used to correct inaccurate or missing information, achieving high performance on fashion image classification tasks requires large amounts of annotated data, but it is expensive to generate due to labeling costs. One solution can be to generate synthetic data which requires no manual labeling. However, training a model with a dataset of solely synthetic images can lead to poor generalization when performing inference on real-world data because of the domain shift. We introduce a new unsupervised domain adaptation technique that converts images from the synthetic domain into the real-world domain. Our approach combines a generative neural network and a classifier that are jointly trained to produce realistic images while preserving the synthetic label information. We found that using real-world pseudo-labels during training helps the classifier to generalize in the real-world domain, reducing the synthetic bias. We successfully train a visual pattern classification model in the fashion domain without real-world annotations. Experiments show that our method outperforms other unsupervised domain adaptation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lone, S., Harboul, N., Weltevreden, J.: 2021 European e-commerce report

    Google Scholar 

  2. Liang, X., Lin, L., Yang, W., Luo, P., Huang, J., Yan, S.: Clothes co-parsing via joint image segmentation and labeling with application to clothing retrieval. IEEE Trans. Multimedia 18(6), 1175–1186 (2016)

    Article  Google Scholar 

  3. Liu, Z., Yan, S., Luo, P., Wang, X., Tang, X.: Fashion landmark detection in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 229–245. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_15

    Chapter  Google Scholar 

  4. Jagadeesh, V., Piramuthu, R., Bhardwaj, A., Di, W., Sundaresan, N.: Large scale visual recommendations from street fashion images. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1925–1934 (2014)

    Google Scholar 

  5. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)

    Google Scholar 

  6. Rostamzadeh, N., et al.: Fashion-Gen: the generative fashion dataset and challenge. arXiv preprint arXiv:1806.08317 (2018)

  7. Wu, H., et al.: The fashion IQ dataset: retrieving images by combining side information and relative natural language feedback. CVPR (2021)

    Google Scholar 

  8. Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3752–3761 (2018)

    Google Scholar 

  9. Moreu, E., Arazo, E., McGuinness, K., O’Connor, N.E.: Joint one-sided synthetic unpaired image translation and segmentation for colorectal cancer prevention. Expert Syst., e13137 (2022)

    Google Scholar 

  10. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8690–8699 (2021)

    Google Scholar 

  11. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  12. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)

    Article  Google Scholar 

  13. Wang, Q., Gao, J., Lin, W., Yuan, Y.: Learning from synthetic data for crowd counting in the wild. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8198–8207 (2019)

    Google Scholar 

  14. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  15. Moreu, E., McGuinness, K., Ortego, D., O’Connor, N.E.: Domain randomization for object counting. arXiv preprint arXiv:2202.08670 (2022)

  16. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: The IEEE International Conference on Computer Vision (ICCV) (October 2019)

    Google Scholar 

  17. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073. IEEE (2012)

    Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: European Conference on Computer Vision (2020)

    Google Scholar 

  21. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  22. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org

  23. Guevarra, E.T.M.: Modeling and animation using blender: blender 2.80: the rise of Eevee. Apress (2019)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1081–1090. PMLR (2019)

    Google Scholar 

  26. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning, pp. 7404–7413. PMLR (2019)

    Google Scholar 

  27. Jiang, J., Baixu Chen, B.F.M.L.: Transfer-learning-library. https://github.com/thuml/Transfer-Learning-Library (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Moreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreu, E., Martinelli, A., Naughton, M., Kelly, P., O’Connor, N.E. (2023). Fashion CUT: Unsupervised Domain Adaptation for Visual Pattern Classification in Clothes Using Synthetic Data and Pseudo-labels. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics