Skip to main content

An Analysis of Spatial-Spectral Dependence in Hyperspectral Autoencoders

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13886))

Included in the following conference series:

  • 616 Accesses

Abstract

Hyperspectral imaging is central for remote sensing, and much research has been done on analysis methods for land surveillance using space- and air-borne imaging systems. Proximal hyperspectral imaging is also widely used in plant and agriculture science. It allows the remote capturing of leaf reflectance information in order to determine and classify plant health and disease. With the high information density in hyperspectral images, it becomes increasingly important to apply sophisticated feature extraction in order to reduce image dimensionality while retaining useful information. Autoencoders are one of the primary methods for deep learning-based feature extraction in hyperspectral images. We investigate different setups of autoencoders to encode the spatial and spectral dimensions in different orders and ways. To our surprise, the best turns out to be a 3D CNN, where the spectral dimension is treated in the same way as the spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adão, T., et al.: Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9(11), 1110 (2017). https://doi.org/10.3390/rs9111110,https://www.mdpi.com/2072-4292/9/11/1110

  2. Audebert, N., Le Saux, B., Lefevre, S.: Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7(2), 159–173 (2019). https://doi.org/10.1109/MGRS.2019.2912563

    Article  Google Scholar 

  3. Barberio, M., et al.: Intraoperative guidance using hyperspectral imaging: a review for surgeons. Diagnostics 11(11), 2066 (2021). https://doi.org/10.3390/diagnostics11112066

  4. Bock, C.H., Poole, G.H., Parker, P.E., Gottwald, T.R.: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 29(2), 59–107 (2010). https://doi.org/10.1080/07352681003617285

  5. Gitelson, A.A., Gritz \(\dagger \), Y., Merzlyak, M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160(3), 271–282 (2003). https://doi.org/10.1078/0176-1617-00887,https://www.sciencedirect.com/science/article/pii/S0176161704704034

  6. Gowen, A., O’Donnell, C., Cullen, P., Downey, G., Frias, J.: Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007). https://doi.org/10.1016/j.tifs.2007.06.001,https://www.sciencedirect.com/science/article/pii/S0924224407002026

  7. Hege, E.K., O’Connell, D., Johnson, W., Basty, S., Dereniak, E.L.: Hyperspectral imaging for astronomy and space surveillance. In: Shen, S.S., Lewis, P.E. (eds.) Imaging Spectrometry IX. vol. 5159, pp. 380–391. International Society for Optics and Photonics, SPIE (2004). https://doi.org/10.1117/12.506426

  8. Huang, S.Y., Mukundan, A., Yu-Ming, T., Kim, Y., Lin, F.C., Wang, H.C.: Recent advances in counterfeit art, document, photo, hologram, and currency detection using hyperspectral imaging. Sensors 22, 7308 (2022). https://doi.org/10.3390/s22197308

  9. Ji, S., Zhang, C., Xu, A., Shi, Y., Duan, Y.: 3D convolutional neural networks for crop classification with multi-temporal remote sensing images. Remote Sens. 10(2), 75 (2018). https://doi.org/10.3390/rs10010075

  10. Lowe, A., Harrison, N., French, A.P.: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 13(1), 80 (2017). https://doi.org/10.1186/s13007-017-0233-z

  11. Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J.: Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12(16), 2659 (2020)

    Article  Google Scholar 

  12. Lu, G., Halig, L., Wang, D., Qin, X., Chen, Z.G., Fei, B.: Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging. J. Biomed. Opt. 19(10), 106004 (2014). https://doi.org/10.1117/1.jbo.19.10.106004

    Article  Google Scholar 

  13. Nagasubramanian, K., Jones, S., Singh, A.K., Sarkar, S., Singh, A., Ganapathysubramanian, B.: Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 15(1), 1–10 (2019). https://doi.org/10.1186/s13007-019-0479-8

  14. Osco, L.P., et al.: A machine learning framework to predict nutrient content in valencia-orange leaf hyperspectral measurements. Remote Sens. 12(6), 906 (2020). https://doi.org/10.3390/rs12060906,https://www.mdpi.com/2072-4292/12/6/906

  15. Paoletti, M., Haut, J., Plaza, J., Plaza, A.: Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogrammetry Remote Sens. 158, 279–317 (2019)

    Article  Google Scholar 

  16. Peng, X., et al.: Prediction of the nitrogen, phosphorus and potassium contents in grape leaves at different growth stages based on UAV multispectral remote sensing. Remote Sens. 14(11), 2659 (2022). https://doi.org/10.3390/rs14112659,https://www.mdpi.com/2072-4292/14/11/2659

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Wang, C., et al.: A review of deep learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 54(7), 5205–5253 (2021). https://doi.org/10.1007/s10462-021-10018-y

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Michael Laprade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laprade, W.M., Westergaard, J.C., Nielsen, J., Nielsen, M., Dahl, A.B. (2023). An Analysis of Spatial-Spectral Dependence in Hyperspectral Autoencoders. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics