Skip to main content

Introducing Spatial Context in Patch-Based Deep Learning for Semantic Segmentation in Whole Body MRI

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Improved imaging protocols and rapid scanning are making whole-body imaging increasingly popular in medical applications, where accurate object segmentation often plays an important role. Nowadays, convolutional neural networks (CNN) are the go-to method for automated image segmentation. Unfortunately, with improved image resolution, whole-body scans can grow large in size, preventing CNN training on entire images due to GPU memory limitations. An alternative to full-image training is patch-based training, which however suffers from context loss. We propose a way of reintroducing spatial context with marginal increase in memory requirements by employing landmark-normalized distance maps that carry relative position information for the patches. As a proof-of-concept we evaluate its effect with multiple networks with and without built-in context integration, using a multi-class whole-body MRI dataset. The results show that our proposed approach yields significant improvement over the baseline networks, even when used out-of-the box. We provide a discussion on its regularization properties and usability cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  2. Estrada, S., et al.: FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. Magn. Reson. Med. 83(4), 1471–1483 (2020). https://doi.org/10.1002/mrm.28022

    Article  Google Scholar 

  3. Eustace, S.J., Nelson, E.: Whole body magnetic resonance imaging. BMJ 328(7453), 1387 (2004). https://doi.org/10.1136/bmj.328.7453.1387

    Article  Google Scholar 

  4. Ghafoorian, M., Karssemeijer, N., Heskes, T., et al.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. 7, 5110 (2017). https://doi.org/10.1038/s41598-017-05300-5

  5. Ghafoorian, M., et al.: Deep multi-scale location-aware 3d convolutional neural networks for automated detection of Lacunes of presumed vascular origin. NeuroImage: Clin. 14, 391–399 (2017). https://doi.org/10.1016/j.nicl.2017.01.033

  6. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2424–2433 (2016). https://doi.org/10.1109/CVPR.2016.266

  7. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  8. Kao, P.Y., et al.: Improving patch-based convolutional neural networks for MRI brain tumor segmentation by leveraging location information. Front. Neurosci. 13, 01449 (2020). https://doi.org/10.3389/fnins.2019.01449

  9. Lavdas, I., et al.: Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (mri), using classification forests (cfs), convolutional neural networks (cnns), and a multi-atlas (ma) approach. Med. Phys. 44(10), 5210–5220 (2017). https://doi.org/10.1002/mp.12492

    Article  Google Scholar 

  10. Lind, L.: Relationships between three different tests to evaluate endothelium-dependent vasodilation and cardiovascular risk in a middle-aged sample. J. Hypertens. 31, 1570–1574 (2013). https://doi.org/10.1097/HJH.0b013e3283619d50

    Article  Google Scholar 

  11. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better (2015). https://doi.org/10.48550/arxiv.1506.04579

  12. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  13. Pezzano, G., Ribas Ripoll, V., Radeva, P.: CoLe-CNN: context-learning convolutional neural network with adaptive loss function for lung nodule segmentation. Comput. Methods Programs Biomed. 198, 105792 (2021). https://doi.org/10.1016/j.cmpb.2020.105792

    Article  Google Scholar 

  14. Rachmadi, M.F., del C. Valdés-Hernández, M., Agan, M.L.F., Di Perri, C., Komura, T.: Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Computer. Med. Imag. Graph. 66, 28–43 (2018). https://doi.org/10.1016/j.compmedimag.2018.02.002

  15. Rickmann, A.M., Senapati, J., Kovalenko, O., Peters, A., Bamberg, F., Wachinger, C.: AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies. BMC Med. Imag. 22, 168 (2022). https://doi.org/10.1186/s12880-022-00893-4

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Strand, R., Malmberg, F., Johansson, L., Lind, L., Sundbom, M., Ahlström, H., Kullberg, J.: A concept for holistic whole body MRI data analysis, Imiomics. PLOS ONE 12(2), 1–17 (2017). https://doi.org/10.1371/journal.pone.0169966

  18. Summers, P., et al.: Whole-body magnetic resonance imaging: technique, guidelines and key applications. Ecancermedicalscience 15, 1164 (2021). https://doi.org/10.3332/ecancer.2021.1164

  19. Valindria, V.V., et al.: Small organ segmentation in whole-body MRI using a two-stage FCN and weighting schemes. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 346–354. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_40

    Chapter  Google Scholar 

  20. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017). https://doi.org/10.1109/CVPR.2017.660

Download references

Acknowledgments

E.B. is partially funded by the Centre for Interdiciplinary Mathematics (CIM), Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Breznik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breznik, E., Kullberg, J., Ahlström, H., Strand, R. (2023). Introducing Spatial Context in Patch-Based Deep Learning for Semantic Segmentation in Whole Body MRI. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics