Skip to main content

Polarimetric Underwater Stereo

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

We propose a novel method for recovering per-pixel surface normals and depth of objects in water. We show that these two geometric surface properties of each pixel can be reconstructed simultaneously when observing an object underwater, regardless of its texture. Our key idea is to leverage polarized rays along different underwater light paths while considering perspective projection and refraction. We implement our method using an off-the-shelf polarization camera and an LCD, and derive a practical calibration method to determine the values of its imaging parameters using a single planar mirror. Results on a number of real-world objects in water demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Ramalingam, S., Taguchi, Y., Chari, V.: A theory of multi-layer flat refractive geometry. In: Proceedings CVPR, pp. 3346–3353 (2012)

    Google Scholar 

  2. Asano, Y., Zheng, Y., Nishino, K., Sato, I.: Shape from water: bispectral light absorption for depth recovery. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 635–649. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_38

    Chapter  Google Scholar 

  3. Atkinson, G.A., Hancock, E.R.: Recovery of surface orientation from diffuse polarization. IEEE Trans. Image Process. 15(6), 1653–1664 (2006)

    Article  Google Scholar 

  4. Baek, S.H., Jeon, D.S., Tong, X., Kim, M.H.: Simultaneous acquisition of polarimetric SVBRDF and Normals. TOG 37(6), 1–268 (2018)

    Article  Google Scholar 

  5. Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier (2013)

    Google Scholar 

  6. Chadebecq, F., et al.: Refractive two-view reconstruction for underwater 3D vision. IJCV (2019). https://doi.org/10.1007/s11263-019-01218-9

    Article  Google Scholar 

  7. Chari, V., Sturm, P.: Multiple-view geometry of the refractive plane. In: Proceedings BMVC (2009)

    Google Scholar 

  8. Chen, X., Yang, Y.H.: Two-view camera housing parameters calibration for multi-layer flat refractive interface. In: Proceedings CVPR (2014)

    Google Scholar 

  9. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, Z., Gu, J., Shi, B., Tan, P., Kautz, J.: Polarimetric multi-view stereo. In: Proceedings CVPR, pp. 1558–1567 (2017)

    Google Scholar 

  11. Fan, H., et al.: Underwater optical 3-D reconstruction of photometric stereo considering light refraction and attenuation. IEEE J. Oceanic Eng. 47(1), 46–58 (2021)

    Article  Google Scholar 

  12. Fujimura, Y., Iiyama, M., Hashimoto, A., Minoh, M.: Photometric stereo in participating media considering shape-dependent forward scatter. In: Proceedings CVPR, pp. 7445–7453 (2018)

    Google Scholar 

  13. Fukao, Y., Kawahara, R., Nobuhara, S., Nishino, K.: Polarimetric normal stereo. In: Proceedings CVPR, pp. 682–690 (2021)

    Google Scholar 

  14. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., Debevec, P.: Multiview face capture using polarized spherical gradient illumination. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp. 1–10 (2011)

    Google Scholar 

  15. Gregson, J., Krimerman, M., Hullin, M.B., Heidrich, W.: Stochastic tomography and its applications in 3d imaging of mixing fluids. In: Proceedings ACM SIGGRAPH, pp. 1–10 (2012)

    Google Scholar 

  16. Grossberg, M.D., Nayar, S.K.: The Raxel imaging model and ray-based calibration. IJCV 61(2), 119–137 (2005)

    Article  MATH  Google Scholar 

  17. Huynh, C.P., Robles-Kelly, A., Hancock, E.: Shape and refractive index recovery from single-view polarisation images. In: Proceedings CVPR, pp. 1229–1236. IEEE (2010)

    Google Scholar 

  18. Ichimaru, K., Taguchi, Y., Kawasaki, H.: Unified underwater structure-from-motion. In: Proceedings 3DV, pp. 524–532. IEEE (2019)

    Google Scholar 

  19. Jordt-Sedlazeck, A., Koch, R.: Refractive structure-from-motion on underwater images. In: Proceedings ICCV (2013)

    Google Scholar 

  20. Kang, L., Wu, L., Yang, Y.-H.: Two-view underwater structure and motion for cameras under flat refractive interfaces. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 303–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_22

    Chapter  Google Scholar 

  21. Kawahara, R., Nobuhara, S., Matsuyama, T.: Dynamic 3D capture of swimming fish by underwater active stereo. Methods Oceanography 17, 118–137 (2016)

    Article  Google Scholar 

  22. Kuo, M.Y.J., Kawahara, R., Nobuhara, S., Nishino, K.: Non-rigid shape from water. TPAMI 43(7), 2220–2232 (2021)

    Google Scholar 

  23. Kuo, M.Y.J., Murai, S., Kawahara, R., Nobuhara, S., Nishino, K.: Surface normals and shape from water. TPAMI (2021)

    Google Scholar 

  24. Lu, J., Ji, Y., Yu, J., Ye, J.: Mirror surface reconstruction using polarization field. In: Proceedings ICCP, pp. 1–9 (2019)

    Google Scholar 

  25. Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.E., et al.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. Rendering Tech. 2007(9), 10 (2007)

    Google Scholar 

  26. Miraldo, P., Araujo, H.: Calibration of smooth camera models. TPAMI 35(9), 2091–2103 (2012)

    Google Scholar 

  27. Miyazaki, D., Shigetomi, T., Baba, M., Furukawa, R., Hiura, S., Asada, N.: Polarization-based surface normal estimation of black specular objects from multiple viewpoints. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, pp. 104–111. IEEE (2012)

    Google Scholar 

  28. Miyazaki, D., Tan, R.T., Hara, K., Ikeuchi, K.: Polarization-based inverse rendering from a single view. In: Proceedings, ICCV, vol. 3, p. 982. IEEE Computer Society (2003)

    Google Scholar 

  29. Morel, O., Meriaudeau, F., Stolz, C., Gorria, P.: Polarization imaging applied to 3D reconstruction of specular metallic surfaces. In: Machine Vision Applications in Industrial Inspection XIII, vol. 5679, pp. 178–186. SPIE (2005)

    Google Scholar 

  30. Morris, N.J., Kutulakos, K.N.: Dynamic refraction stereo. TPAMI 33(8), 1518–1531 (2011)

    Google Scholar 

  31. Murez, Z., Treibitz, T., Ramamoorthi, R., Kriegman, D.: Photometric stereo in a scattering medium. In: Proceedings ICCV (2015)

    Google Scholar 

  32. Ngo, T.T., Nagahara, H., Taniguchi, R.: Shape and light directions from shading and polarization. In: Proceedings CVPR, pp. 2310–2318. IEEE Computer Society, Los Alamitos, CA, USA (2015)

    Google Scholar 

  33. Riviere, J., Reshetouski, I., Filipi, L., Ghosh, A.: Polarization imaging reflectometry in the wild. TOG 36(6), 1–14 (2017)

    Article  Google Scholar 

  34. Sagawa, R., Kawasaki, H., Kiyota, S., Furukawa, R.: Dense one-shot 3D reconstruction by detecting continuous regions with parallel line projection. In: Proceedings ICCV, pp. 1911–1918. IEEE (2011)

    Google Scholar 

  35. Shibata, A., Fujii, H., Yamashita, A., Asama, H.: Scale-reconstructable structure from motion using refraction with a single camera. In: Proceedings ICRA, pp. 5239–5244 (2015). https://doi.org/10.1109/ICRA.2015.7139929

  36. Smith, W.A., Ramamoorthi, R., Tozza, S.: Height-from-polarisation with unknown lighting or albedo. TPAMI 41(12), 2875–2888 (2018)

    Article  Google Scholar 

  37. Sturm, P., Barreto, J.P.: General imaging geometry for central catadioptric cameras. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 609–622. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_45

    Chapter  Google Scholar 

  38. Sun, B., Ramamoorthi, R., Narasimhan, S.G., Nayar, S.K.: A practical analytic single scattering model for real time rendering. TOG 24(3), 1040–1049 (2005)

    Article  Google Scholar 

  39. Tozza, S., Mecca, R., Duocastella, M., Del Bue, A.: Direct differential photometric stereo shape recovery of diffuse and specular surfaces. J. Math. Imag. Vis. 56(1), 57–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tozza, S., Smith, W.A., Zhu, D., Ramamoorthi, R., Hancock, E.R.: Linear differential constraints for photo-polarimetric height estimation. In: Proceedings ICCV, pp. 2279–2287 (2017)

    Google Scholar 

  41. Tozza, S., Zhu, D., Smith, W.A., Ramamoorthi, R., Hancock, E.R.: Uncalibrated, two source photo-polarimetric stereo. TPAMI 44(9), 5747–5760 (2021)

    Google Scholar 

  42. Tsiotsios, C., Davison, A.J., Kim, T.K.: Near-lighting photometric stereo for unknown scene distance and medium attenuation. Image Vis. Comput. 57, 44–57 (2017)

    Article  Google Scholar 

  43. Verbiest, F., Proesmans, M., Van Gool, L.: Modeling the effects of windshield refraction for camera calibration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 397–412. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_24

    Chapter  Google Scholar 

  44. Zhang, Z.: A flexible new technique for camera calibration. TPAMI 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  45. Zhao, J., Monno, Y., Okutomi, M.: Polarimetric multi-view inverse rendering. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_6

    Chapter  Google Scholar 

  46. Zhu, D., Smith, W.A.: Depth from a Polarisation+ RGB stereo pair. In: Proceedings CVPR, pp. 7586–7595 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was in part supported by JSPS KAKENHI JP21K21319, JP22K17914, and JP20H00612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawahara, R., Kuo, MY.J., Okabe, T. (2023). Polarimetric Underwater Stereo. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13886. Springer, Cham. https://doi.org/10.1007/978-3-031-31438-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31438-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31437-7

  • Online ISBN: 978-3-031-31438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics