Abstract
The knowledge of humanity passes through the ancient texts whose acquisition, reconstruction and interpretation become tasks of fundamental importance. The simultaneous spread of equipment capable of exploiting new technologies for data acquisition together with the opportunities offered by Artificial Intelligence open new unimaginable horizons in different applications including the conservation of cultural heritage. In this work, we refer to the opportunity inherent the acquisition of texts from papyri via machine learning and deep learning applications. The theme of assembling fragments, will be investigated by referring to some recent interesting contributions of the scientific community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Iv. the herculaneum papyri. Bull. Inst. Class. Stud. 33(S54), 36–45 (1986). https://doi.org/10.1111/j.2041-5370.1986.tb01374.x
Abitbol, R., Shimshoni, I., Ben-Dov, J.: Machine learning based assembly of fragments of ancient papyrus. J. Comput. Cult. Heritage (JOCCH) 14(3), 1–21 (2021)
Berlino, A., Caroprese, L., La Marca, A., Vocaturo, E., Zumpano, E.: Augmented reality for the enhancement of archaeological heritage: a Calabrian experience. In: CEUR Workshop Proceedings, vol. 2320, pp. 86–94 (2019)
Berlino, A., Caroprese, L., Vocaturo, E., Zumpano, E.: A mobile application for the enhancement of POIs in Calabria. In: VIPERC@ IRCDL, pp. 13–25 (2020)
Bukreeva, I., et al.: Virtual unrolling and deciphering of Herculaneum papyri by x-ray phase-contrast tomography. Sci. Rep. 6(1), 1–7 (2016)
Bülow-Jacobsen, A.: Writing materials in the ancient world (2011)
Calautti, M., Caroprese, L., Greco, S., Molinaro, C., Trubitsyna, I., Zumpano, E.: Existential active integrity constraints. Expert Syst. Appl. 168, 114297 (2021). https://doi.org/10.1016/j.eswa.2020.114297
Caroprese, L., Trubitsyna, I., Truszczynski, M., Zumpano, E.: A measure of arbitrariness in abductive explanations. Theory Pract. Log. Program. 14(4–5), 665–679 (2014). https://doi.org/10.1017/S1471068414000271
Caroprese, L., Vocaturo, E., Zumpano, E.: Features for melanoma lesions: extraction and classification. In: WI 2019, pp. 238–243. ACM (2019). https://doi.org/10.1145/3358695.3360898
Caroprese, L., Vocaturo, E., Zumpano, E.: Argumentation approaches for explanaible AI in medical informatics. Intell. Syst. Appl. 16, 200109 (2022). https://doi.org/10.1016/j.iswa.2022.200109
Caroprese, L., Zumpano, E.: Aggregates and priorities in P2P data management systems. In: Desai, B.C., Cruz, I.F., Bernardino, J. (eds.) 15th International Database Engineering and Applications Symposium (IDEAS 2011), 21–27 September 2011, Lisbon, Portugal, pp. 1–7. ACM (2011). https://doi.org/10.1145/2076623.2076625
Caroprese, L., Zumpano, E.: Handling preferences in P2P systems. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 91–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28472-4_6
Caroprese, L., Zumpano, E.: Restoring consistency in P2P deductive databases. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 168–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33362-0_13
Caroprese, L., Zumpano, E.: A logic framework for P2P deductive databases. Theory Pract. Log. Program. 20(1), 1–43 (2020). https://doi.org/10.1017/S1471068419000073
Caroprese, L., Zumpano, E.: Semantic data management in P2P systems driven by self-esteem. J. Log. Comput. 32(5), 871–901 (2022). https://doi.org/10.1093/logcom/exac001
Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 991–997. IEEE (2017)
Chung, M.G., Fleck, M.M., Forsyth, D.A.: Jigsaw puzzle solver using shape and color. In: ICSP 1998. 1998 Fourth International Conference on Signal Processing (Cat. No. 98TH8344), vol. 2, pp. 877–880. IEEE (1998)
Frösén, J.: Conservation of ancient papyrus materials (2011)
Fuduli, A., Veltri, P., Vocaturo, E., Zumpano, E.: Melanoma detection using color and texture features in computer vision systems. Adv. Sci. Technol. Eng. Syst. J. 4(5), 16–22 (2019)
Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7
Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)
Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICML deep learning workshop, vol. 2, p. 0. Lille (2015)
Kong, W., Kimia, B.B.: On solving 2D and 3D puzzles using curve matching. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2, pp. II-II. IEEE (2001)
Kosiba, D.A., Devaux, P.M., Balasubramanian, S., Gandhi, T.L., Kasturi, K.: An automatic jigsaw puzzle solver. In: Proceedings of 12th International conference on pattern recognition, vol. 1, pp. 616–618. IEEE (1994)
Labaune, J., Jackson, J., Duling, I., Menu, M., Mourou, G., et al.: Papyrus imaging with terahertz time domain spectroscopy. Appl. Phys. A 100(3), 607–612 (2010)
Leach, B.: Papyrus manufacture. UCLA Encycl. Egyptology 1(1) (2009)
Lombardi, F., Marinai, S.: Deep learning for historical document analysis and recognition-a survey. J. Imaging 6(10), 110 (2020)
Misra, I., Maaten, L.V.D.: Self-supervised learning of pretext-invariant representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6707–6717 (2020)
Paixão, T.M., et al.: Self-supervised deep reconstruction of mixed strip-shredded text documents. Pattern Recogn. 107, 107535 (2020)
Pirrone, A., Aimar, M.B., Journet, N.: Papy-S-Net: a Siamese network to match papyrus fragments. In: Proceedings of the 5th International Workshop on Historical Document Imaging and Processing, pp. 78–83 (2019)
Pirrone, A., Beurton-Aimar, M., Journet, N.: Self-supervised deep metric learning for ancient papyrus fragments retrieval. Int. J. Doc. Anal. Recogn. (IJDAR) 24(3), 219–234 (2021). https://doi.org/10.1007/s10032-021-00369-1
Romain, K., Abdel, B.: Semi-supervised learning through adversary networks for baseline detection. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 5, pp. 128–133. IEEE (2019)
Sizikova, E., Funkhouser, T.: Wall painting reconstruction using a genetic algorithm. J. Comput. Cult. Heritage (JOCCH) 11(1), 1–17 (2017)
Studer, L., et al.: A comprehensive study of ImageNet pre-training for historical document image analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 720–725. IEEE (2019)
Tang, Y., Peng, L., Xu, Q., Wang, Y., Furuhata, A.: CNN based transfer learning for historical Chinese character recognition. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 25–29. IEEE (2016)
Thompson, E.M.: An Introduction to Greek and Latin Palaeography. Cambridge University Press, Cambridge (2013)
Toler-Franklin, C., Brown, B., Weyrich, T., Funkhouser, T., Rusinkiewicz, S.: Multi-feature matching of fresco fragments. ACM Trans. Graph. (TOG) 29(6), 1–12 (2010)
Tsamoura, E., Pitas, I.: Automatic color based reassembly of fragmented images and paintings. IEEE Trans. Image Process. 19(3), 680–690 (2009)
Vocaturo, E., Zumpano, E., Caroprese, L., Pagliuso, S.M., Lappano, D.: Educational games for cultural heritage. In: VIPERC@ IRCDL, pp. 95–106 (2019)
Vocaturo, E., Zumpano, E., Giallombardo, G., Miglionico, G.: DC-SMIL: a multiple instance learning solution via spherical separation for automated detection of displastyc nevi. In: IDEAS 2020, pp. 4:1–4:9. ACM (2020). https://doi.org/10.1145/3410566.3410611
Zumpano, E., Fuduli, A., Vocaturo, E., Avolio, M.: Viral pneumonia images classification by multiple instance learning: preliminary results. In: IDEAS 2021, pp. 292–296. ACM (2021)
Zumpano, E., et al.: Simpatico 3D mobile for diagnostic procedures. In: Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services, pp. 468–472 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Vocaturo, E., Zumpano, E. (2023). Assembling Fragments of Ancient Papyrus via Artificial Intelligence. In: Comito, C., Talia, D. (eds) Pervasive Knowledge and Collective Intelligence on Web and Social Media. PerSOM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 494. Springer, Cham. https://doi.org/10.1007/978-3-031-31469-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-31469-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31468-1
Online ISBN: 978-3-031-31469-8
eBook Packages: Computer ScienceComputer Science (R0)