Skip to main content

A Comparative Study of the Coulomb’s and Franklin’s Laws Inspired Algorithm (CFA) with Modern Evolutionary Algorithms for Numerical Optimization

  • Conference paper
  • First Online:
Pervasive Knowledge and Collective Intelligence on Web and Social Media (PerSOM 2022)

Abstract

Coulomb and Franklin’s electricity laws are used in this paper to model an efficient optimization algorithm based on electric particle searches, which has been named CFA. For the CFA optimizer, the influence of electrically charged particles on each other in charged things has been predicated on the forces of attraction and repulsion. Evolutionary algorithms (EA) such as hybrid real coded genetic algorithm (RCGA) which combines the global and local search (GL-25), differential evolution (DE) with strategy adaptation (SaDE), composite DE (CoDE), the improved standard particle swarm optimization 2011 (SPSO2013) and the grouped comprehensive learning PSO (GCLPSO) are compared to the CFA optimizer for finding global solutions of seven basic benchmark functions of high dimension D = 50. (GCLPSO). Experiments have shown that the suggested CFA optimizer is quite effective and competitive for the benchmark functions. Note that the source code of the CFA algorithm is publicly available at https://www.optim-app.com/projects/cfa, https://www.mathworks.com/matlabcentral/fileexchange/127727-franklin-s-laws-inspired-algorithm-cfa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, W., Wang, L., Zhang, Z.: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl. Based Syst 163, 283–304 (2019)

    Article  Google Scholar 

  2. Bayraktar, Z., Komurcu, M., Werner, D.H.: Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Antennas and Propagation Society International Symposium, p. 1–4. (2010)

    Google Scholar 

  3. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J ACM 8, 212–229 (1961)

    Article  MATH  Google Scholar 

  4. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput J 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Winfield, D.H.: Function and functional optimization by interpolation in data tables. Harvard University (1970)

    Google Scholar 

  6. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)

    Book  MATH  Google Scholar 

  7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: In MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43 (1995)

    Google Scholar 

  8. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Abbass, H.A.: MBO: Marriage in honey bees optimization-A haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, p. 207–14 (2001)

    Google Scholar 

  10. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22, 52–67 (2002)

    Article  Google Scholar 

  11. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  12. Chu, S.-C., Tsai, P.-W., Pan, J.-S.: Cat swarm optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 854–858. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36668-3_94

    Chapter  Google Scholar 

  13. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, p. 4661–7 (2007)

    Google Scholar 

  14. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simon, D.: Biogeography-based optimization. IEEE Trans Evol Comput 12, 702–713 (2008)

    Article  Google Scholar 

  16. Yang, X-S., Deb, S.: Cuckoo search via Lévy flights. 2009 World Congr. Nat Biol inspired Comput, p. 210–214 (2009)

    Google Scholar 

  17. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 13, 973–990 (2009)

    Article  Google Scholar 

  18. Lam, A.Y.S., Li, V.O.K.: Chemical-reaction-inspired metaheuristic for optimization. IEEE Trans. Evol. Comput. 14, 381–399 (2009)

    Article  Google Scholar 

  19. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183, 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  20. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  21. Drigo, M.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man, Cybern. B 26, 1–13 (1996)

    Google Scholar 

  22. Mahdavi, S., Shiri, M.E., Rahnamayan, S.: Metaheuristics in large-scale global continues optimization: a survey. Inf. Sci. 295, 407–428 (2015)

    Article  MathSciNet  Google Scholar 

  23. Halliday D, Resnick R, Walker J. Fundamentals of physics. John Wiley & Sons; 2013

    Google Scholar 

  24. Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global optimization problems. IEEE Trans. Syst. Man, Cybern. Part B 42, 627–646 (2011)

    Google Scholar 

  25. García-Martínez, C., Lozano, M., Herrera, F., Molina, D., Sánchez, A.M.: Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res. 185, 1088–1113 (2008)

    Article  MATH  Google Scholar 

  26. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2008)

    Article  Google Scholar 

  27. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)

    Article  Google Scholar 

  28. Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation 2011 at cec-2013: A baseline for future pso improvements. In: 2013 IEEE Congress Evolutionary Computation, p. 2337–2344 (2013)

    Google Scholar 

  29. Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)

    Article  Google Scholar 

  30. Gul, F., et al.: A Centralized Strategy for Multi-Agent Exploration. IEEE Access 10, 126871–126884 (2022)

    Article  Google Scholar 

  31. Abualigah, L., Elaziz, M.A., Khodadadi, N., Forestiero, A., Jia, H., Gandomi, A.H.: Aquila optimizer based PSO swarm intelligence for IoT task scheduling application in cloud computing. In: Houssein, E.H., Abd Elaziz, M., Oliva, D., Abualigah, L. (Eds.) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol. 1038, pp. 481–497. Springer, Cham. (2022). https://doi.org/10.1007/978-3-030-99079-4_19

  32. Abualigah, L., Forestiero, A., Elaziz, M.A.: Bio-inspired agents for a distributed NLP-based clustering in smart environments. In: Abraham, A., et al. (eds.) SoCPaR 2021. LNNS, vol. 417, pp. 678–687. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96302-6_64

    Chapter  Google Scholar 

  33. Alzu’bi, D., et al.: Kidney tumor detection and classification based on deep learning approaches: a new dataset in CT scans. J. Healthc. Eng. 2022 (2022)

    Google Scholar 

  34. Khazalah, A., et al.: Image processing identification for sapodilla using convolution neural network (CNN) and transfer learning techniques. In: Abualigah, L. (Eds.) Classification Applications with Deep Learning and Machine Learning Technologies. Studies in Computational Intelligence, vol. 1071, pp. 107–127. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17576-3_5

  35. Melhem, M.K.B., Abualigah, L., Zitar, R.A., Hussien, A.G., Oliva, D.: Comparative study on Arabic text classification: challenges and opportunities. In: Abualigah, L. (eds.) Classification Applications with Deep Learning and Machine Learning Technologies. Studies in Computational Intelligence, vol. 1071, pp. 217–224. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17576-3_10

  36. Anuar, N.A. et al.: Rambutan image classification using various deep learning approaches. In: Abualigah, L. (eds.) Classification Applications with Deep Learning and Machine Learning Technologies. Studies in Computational Intelligence, vol. 1071, pp. 23–43. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17576-3_2

  37. Ke, C. et al.: Mango varieties classification-based optimization with transfer learning and deep learning approaches. In: Abualigah, L. (ed.) Classification Applications with Deep Learning and Machine Learning Technologies. Studies in Computational Intelligence, vol. 1071, pp. 45–65. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17576-3_3

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghasemi, M., Zare, M., Zahedi, A., Hemmati, R., Abualigah, L., Forestiero, A. (2023). A Comparative Study of the Coulomb’s and Franklin’s Laws Inspired Algorithm (CFA) with Modern Evolutionary Algorithms for Numerical Optimization. In: Comito, C., Talia, D. (eds) Pervasive Knowledge and Collective Intelligence on Web and Social Media. PerSOM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 494. Springer, Cham. https://doi.org/10.1007/978-3-031-31469-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31469-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31468-1

  • Online ISBN: 978-3-031-31469-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics