Skip to main content

A Review of Space Exploration and Trajectory Optimization Techniques for Autonomous Systems: Comprehensive Analysis and Future Directions

  • Conference paper
  • First Online:
Pervasive Knowledge and Collective Intelligence on Web and Social Media (PerSOM 2022)

Abstract

Autonomous systems have achieved great success over the last couple of decades. They have bring the revolutionary change in the world, either its ground vehicles, aerial systems or underground vehicles. Number of research papers have been written on the importance of autonomous systems and their applications in different field. Keeping in view the pattern of research done by authors, an effort has been made to provide a single platform for readers to familiarize themselves with applications involved in terrestrial, aerial and undersea systems along with different sets of dimensions involved in achieving these applications. Therefore, the article provides a summary of the main communication methods used by terrestrial, aerial, and undersea space research vehicles. In addition to providing an exhaustive summary of the difficulties encountered in trajectory planning, space exploration, optimization, and other areas, the research also presents optimization methods applicable to aerial, undersea, and terrestrial applications. As the literature lacks extensive studies like this one, hence an effort has been made to fill the gap for readers interested in path design. This study tackles numerical, bioinspired, and hybrid techniques for each of the dimensions given. With this study, we attempted to provide a single repository for a plethora of research on autonomous land vehicles, their trajectory optimization, as well as research on aerial and undersea vehicles. The article ends with the most practical directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhishek, B., Ranjit, S., Shankar, T., Eappen, G., Sivasankar, P., Rajesh, A.: Hybrid PSO-HSA and PSO-GA algorithm for 3D path planning in autonomous UAVs. SN Appl. Sci. 2(11), 1–16 (2020)

    Article  Google Scholar 

  2. Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)

    Article  Google Scholar 

  3. Arnold, M., Burgermeister, B., Führer, C., Hippmann, G., Rill, G.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49(7), 1159–1207 (2011)

    Google Scholar 

  4. Ben-Moshe, B., Landau, Y., Marbel, R., Mishiner, A.: Bio-inspired micro drones. In: 2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), pp. 1–5. IEEE (2018)

    Google Scholar 

  5. Czyż, Z., Suwala, S., Karpiński, P., Skiba, K.: Numerical analysis of the support platform for an unmanned aerial vehicle. In: Journal of Physics: Conference Series, vol. 2130, p. 012029. IOP Publishing (2021)

    Google Scholar 

  6. Erke, S., Bin, D., Yiming, N., Qi, Z., Liang, X., Dawei, Z.: An improved a-star based path planning algorithm for autonomous land vehicles. Int. J. Adv. Robot. Syst. 17(5), 1729881420962263 (2020)

    Article  Google Scholar 

  7. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for NPSOL (version 4.0): A fortran package for nonlinear programming. Technical report, STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB (1986)

    Google Scholar 

  8. Gul, F., et al.: A centralized strategy for multi-agent exploration. IEEE Access 10, 126871–126884 (2022)

    Article  Google Scholar 

  9. Gul, F., Mir, I., Abualigah, L., Sumari, P., Forestiero, A.: A consolidated review of path planning and optimization techniques: technical perspectives and future directions. Electronics 10(18), 2250 (2021)

    Article  Google Scholar 

  10. Gul, F., Mir, S., Mir, I.: Coordinated multi-robot exploration: Hybrid stochastic optimization approach. In: AIAA SCITECH 2022 Forum, p. 1414 (2022)

    Google Scholar 

  11. Gul, F., Rahiman, W., Alhady, S.N., Ali, A., Mir, I., Jalil, A.: Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient. Intell. Humaniz. Comput. 12(1), 7873–7890 (2021)

    Article  Google Scholar 

  12. Herman, P.: Numerical test of underwater vehicle dynamics using velocity controller. In: 2019 12th International Workshop on Robot Motion and Control (RoMoCo), pp. 26–31. IEEE (2019)

    Google Scholar 

  13. Hu, Y., Zhao, W., Wang, L.: Vision-based target tracking and collision avoidance for two autonomous robotic fish. IEEE Trans. Industr. Electron. 56(5), 1401–1410 (2009)

    Article  Google Scholar 

  14. Hull, T., Enright, W.H., Jackson, K.: Runge-kutta research at toronto. Appl. Numer. Math. 22(1–3), 225–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ilango, H.S., Ramanathan, R.: A performance study of bio-inspired algorithms in autonomous landing of unmanned aerial vehicle. Procedia Comput. Sci. 171, 1449–1458 (2020)

    Article  Google Scholar 

  16. Kim, Y., Park, J., Son, W., Yoon, T.: Modified turn algorithm for motion planning based on clothoid curve. Electron. Lett. 53(24), 1574–1576 (2017)

    Article  Google Scholar 

  17. Le, A.V., Nhan, N.H.K., Mohan, R.E.: Evolutionary algorithm-based complete coverage path planning for tetriamond tiling robots. Sensors 20(2), 445 (2020)

    Article  Google Scholar 

  18. Lim, H.S., Chin, C.K., Chai, S., Bose, N.: Online AUV path replanning using quantum-behaved particle swarm optimization with selective differential evolution. Comput. Model. Eng. Sci. 125(1), 33–50 (2020)

    Google Scholar 

  19. Lim, H.S., Fan, S., Chin, C.K., Chai, S., Bose, N., Kim, E.: Constrained path planning of autonomous underwater vehicle using selectively-hybridized particle swarm optimization algorithms. IFAC-PapersOnLine 52(21), 315–322 (2019)

    Article  Google Scholar 

  20. Mansury, E., Nikookar, A., Salehi, M.E.: Artificial bee colony optimization of ferguson splines for soccer robot path planning. In: 2013 First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 85– 89. IEEE (2013)

    Google Scholar 

  21. Mir, I., Eisa, S.A., Taha, H.E., Maqsood, A., Akhtar, S., Islam, T.U.: A stability perspective of bio-inspired UAVs performing dynamic soaring opti mally. Bioinspiration Biomimetics (2021)

    Google Scholar 

  22. Mir, I., Maqsood, A., Akhtar, S.: Dynamic modeling & stability analysis of a generic UAV in glide phase. In: MATEC Web of Conferences, vol. 114, p. 01007. EDP Sciences (2017)

    Google Scholar 

  23. Ni, J., Wu, L., Fan, X., Yang, S.X.: Bioinspired intelligent algorithm and its applications for mobile robot control: a survey. Comput. Intell. Neurosci. 2016, 1–1 (2016)

    Article  Google Scholar 

  24. Noor, M.A., Noor, K.I., Al-Said, E., Waseem, M.: Some new iterative methods for nonlinear equations. Math. Probl. Eng. 2010 (2010)

    Google Scholar 

  25. Owen, M.P., Duffy, S.M., Edwards, M.W.: Unmanned aircraft sense and avoid radar: Surrogate flight testing performance evaluation. In: 2014 IEEE Radar Conference, pp. 0548–0551. IEEE (2014)

    Google Scholar 

  26. Poudel, S., Moh, S.: Hybrid path planning for efficient data collection in UAV-aided WSNs for emergency applications. Sensors 21(8), 2839 (2021)

    Article  Google Scholar 

  27. Saied, M., Slim, M., Mazeh, H., Francis, C., Shraim, H.: Unmanned aerial vehicles fleet control via artificial bee colony algorithm. In: 2019 4th Con ference on Control and Fault Tolerant Systems (SysTol), pp. 80–85. IEEE (2019)

    Google Scholar 

  28. Sánchez-Ferreira, C., Coelho, L., Ayala, H.V., Farias, M.C., Llanos, C.H.: Bio-inspired optimization algorithms for real underwater image restoration. Signal Process. Image Commun. 77, 49–65 (2019)

    Google Scholar 

  29. Sanchez-Lopez, J.L., Wang, M., Olivares-Mendez, M.A., Molina, M., Voos, H.: A real-time 3D path planning solution for collision-free navigation of multirotor aerial robots in dynamic environments. J. Intell. Rob. Syst. 93(1–2), 33–53 (2019)

    Article  Google Scholar 

  30. Shen, C., Shi, Y., Buckham, B.: Model predictive control for an AUV with dynamic path planning. In: 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 475–480. IEEE (2015)

    Google Scholar 

  31. Szczepanski, R., Erwinski, K., Tejer, M., Bereit, A., Tarczewski, T.: Optimal scheduling for palletizing task using robotic arm and artificial bee colony algorithm. Eng. Appl. Artif. Intell. 113, 104976 (2022)

    Article  Google Scholar 

  32. Szczepanski, R., Tarczewski, T., Erwinski, K.: Energy efficient local path planning algorithm based on predictive artificial potential field. IEEE Access 10, 39729–39742 (2022)

    Article  Google Scholar 

  33. Usman, M.R., Usman, M.A., Yaq, M.A., Shin, S.Y.: UAV reconnaissance using bio-inspired algorithms: Joint PSO and penguin search optimization algorithm (PESOA) attributes. In: 2019 16th IEEE Annual Consumer Com- munications & Networking Conference (CCNC), pp. 1–6. IEEE (2019)

    Google Scholar 

  34. Verbeke, J., Cools, R.: The newton-raphson method. Int. J. Math. Educ. Sci. Technol. 26(2), 177–193 (1995)

    Article  MATH  Google Scholar 

  35. Wood, G.R.: The bisection method in higher dimensions. Math. Program. 55(1–3), 319–337 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yilmaz, N.K., Evangelinos, C., Lermusiaux, P.F., Patrikalakis, N.M.: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J. Oceanic Eng. 33(4), 522–537 (2008)

    Article  Google Scholar 

  37. Zhang, K., Sprinkle, J., Sanfelice, R.G.: A hybrid model predictive controller for path planning and path following. In: Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pp. 139–148 (2015)

    Google Scholar 

  38. Zhang, X., Xia, S., Zhang, T., Li, X.: Hybrid FWPS cooperation algorithm based unmanned aerial vehicle constrained path planning. Aerosp. Sci. Technol. 118, 107004 (2021)

    Article  Google Scholar 

  39. Zhang, Y., Guan, G., Pu, X.: The robot path planning based on improved artificial fish swarm algorithm. Mathematical Problems in Engineering 2016 (2016)

    Google Scholar 

  40. Zhao, Y.J.: Optimal patterns of glider dynamic soaring. Op- timal control applications and methods 25(2), 67–89 (2004). https://doi.org/10.1002/oca.739

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu, D., Li, W., Yan, M., Yang, S.X.: The path planning of AUV based on ds information fusion map building and bio-inspired neural network in unknown dynamic environment. Int. J. Adv. Rob. Syst. 11(3), 34 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faiza Gul or Agostino Forestiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gul, F., Mir, I., Gul, U., Forestiero, A. (2023). A Review of Space Exploration and Trajectory Optimization Techniques for Autonomous Systems: Comprehensive Analysis and Future Directions. In: Comito, C., Talia, D. (eds) Pervasive Knowledge and Collective Intelligence on Web and Social Media. PerSOM 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 494. Springer, Cham. https://doi.org/10.1007/978-3-031-31469-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31469-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31468-1

  • Online ISBN: 978-3-031-31469-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics