Skip to main content

Search by Pattern in GPS Trajectories

  • Conference paper
  • First Online:
Mobile Computing, Applications, and Services (MobiCASE 2022)

Abstract

In search by pattern in GPS trajectories, user draws a trajectory, the pattern query, and then receives a set of trajectories ranked by their similarity to the pattern query. We argue that when user draws a pattern query, an initial part of this query (prefix of chosen length) should have more weight than the rest of query. We assume that after receiving a set of similar trajectories, user can refine the pattern query in order to receive more relevant results. We give explanation of our approach by means of web search, where a user searches, for example, for “bratislava castle” and then adds a refinement to this query “opening hours”, where removing the initial part of query does not make sense, as search for “opening hour” alone would return irrelevant results. This idea has led us to considering pattern search that is weighted toward query prefix. We experimentally evaluate this approach, in our experimentation we apply the Geolife data set (Microsoft Research Asia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, R.D.: Mathematical models of confirmation bias (2022). https://doi.org/10.48550/ARXIV.2202.03072, https://arxiv.org/abs/2202.03072

  2. Cavojsky, M., Drozda, M.: Gap analysis of cohave, geolife and T-Drive datasets. In: 14th International Scientific Conference on Distance Learning in Applied Informatics (DIVAI), pp. 356–364. Wolters Kluwer (2022). https://www.divai.sk/assets/divai2022.pdf

  3. Čavojský, M., Drozda, M.: Comparison of user trajectories with the needleman-wunsch algorithm. In: Yin, Y., Li, Y., Gao, H., Zhang, J. (eds.) MobiCASE 2019. LNICST, vol. 290, pp. 141–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28468-8_11

    Chapter  Google Scholar 

  4. Čavojský, M., Drozda, M., Balogh, Z.: Analysis and experimental evaluation of the Needleman-Wunsch algorithm for trajectory comparison. Expert Syst. Appl. 165, 114068 (2021). https://doi.org/10.1016/j.eswa.2020.114068

    Article  Google Scholar 

  5. Dai, H.K., Su, H.C.: On the locality properties of space-filling curves. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 385–394. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_40

    Chapter  Google Scholar 

  6. Fisher, B.: Edinburgh informatics forum pedestrian database (2010). https://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/. Accessed 11 July 2022

  7. Liu, Z., Heer, J.: The effects of interactive latency on exploratory visual analysis. IEEE Trans. Visual Comput. Graphics 20(12), 2122–2131 (2014)

    Article  Google Scholar 

  8. Luo, T., Zheng, X., Xu, G., Fu, K., Ren, W.: An improved DBSCAN algorithm to detect stops in individual trajectories. ISPRS Int. J. Geo Inf. 6(3), 63 (2017)

    Article  Google Scholar 

  9. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001). https://doi.org/10.1145/375360.375365

    Article  Google Scholar 

  10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  11. Niemeyer, G.: Geohash. http://geohash.org/. Accessed 13 July 2022

  12. Plous, S.: The Psychology of Judgment and Decision Making. Mcgraw-Hill Book Company, New York (1993)

    Google Scholar 

  13. Rappaport, T.S., et al.: Wireless Communications: Principles and Practice, vol. 2. Prentice Hall PTR, New Jersey (1996)

    MATH  Google Scholar 

  14. Rucklidge, W. (ed.): The hausdorff distance, vol. 1173, pp. 27–42. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0015093

  15. Sellers, P.H.: On the theory and computation of evolutionary distances. SIAM J. Appl. Math. 26(4), 787–793 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith, T., Waterman, M.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  Google Scholar 

  17. Yang, Y., Cai, J., Yang, H., Zhang, J., Zhao, X.: Tad: a trajectory clustering algorithm based on spatial-temporal density analysis. Expert Syst. Appl. 139, 112846 (2020). https://doi.org/10.1016/j.eswa.2019.112846

    Article  Google Scholar 

  18. Yin, H., Gao, H., Wang, B., Li, S., Li, J.: Efficient trajectory compression and range query processing. World Wide Web 25(3), 1259–1285 (2022)

    Article  Google Scholar 

  19. Zhao, X., Pi, D., Chen, J.: Novel trajectory privacy-preserving method based on clustering using differential privacy. Expert Syst. Appl. 149, 113241 (2020). https://doi.org/10.1016/j.eswa.2020.113241

    Article  Google Scholar 

  20. Zheng, B., Weng, L., Zhao, X., Zeng, K., Zhou, X., Jensen, C.S.: Repose: distributed top-k trajectory similarity search with local reference point tries. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 708–719. IEEE (2021)

    Google Scholar 

  21. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on GPS data. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 312–321. ACM (2008)

    Google Scholar 

  22. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  23. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel sequences from gps trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800. ACM (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maros Cavojsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavojsky, M., Drozda, M. (2023). Search by Pattern in GPS Trajectories. In: Taheri, J., Villari, M., Galletta, A. (eds) Mobile Computing, Applications, and Services. MobiCASE 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 495. Springer, Cham. https://doi.org/10.1007/978-3-031-31891-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31891-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31890-0

  • Online ISBN: 978-3-031-31891-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics