Skip to main content

Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Abstract

The segmentation of MRI is a challenging task due to artifacts introduced by the acquisition process, like bias field and noise. In this paper, using a cartoon-texture decomposition of the image, we present a strategy that segments the cartoon processed by simultaneous bias correction and denoising. Preliminary numerical tests show that our method is effective in segmenting MRI data corrupted by noise.

This work was partially supported by Istituto Nazionale di Alta Matematica - Gruppo Nazionale per il Calcolo Scientifico (INdAM-GNCS, ICAR-CNR INdAM Research Unit) and by the Italian Ministry of University and Research under grant no. PON03PE_00060_5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/spougkakiotis/IP_PMM.

References

  1. Angulakshmi, M., Deepa, M.: A review on deep learning architecture and methods for MRI brain tumour segmentation. Curr. Med. Imaging 17(6), 695–706 (2021). https://doi.org/10.2174/1573405616666210108122048

    Article  Google Scholar 

  2. Antonelli, L., De Simone, V., di Serafino, D.: A view of computational models for image segmentation. Annali Dell’Università Di Ferrara 68, 277–294 (2022). https://doi.org/10.1007/s11565-022-00417-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonelli, L., De Simone, V., Viola, M.: Cartoon-texture evolution for two-region image segmentation. Comput. Optim. Appl. 84(1), 5–26 (2023). https://doi.org/10.1007/s10589-022-00387-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonelli, L., Guarracino, M.R., Maddalena, L., Sangiovanni, M.: Integrating imaging and omics data: a review. Biomed. Signal Process. Control 52, 264–280 (2019). https://doi.org/10.1016/j.bspc.2019.04.032

    Article  Google Scholar 

  5. Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33, 261–274 (2010). https://doi.org/10.1007/s10462-010-9155-0

    Article  Google Scholar 

  6. Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017). https://doi.org/10.1137/1.9781611974997

  7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  8. Buades, A., Le, T.M., Morel, J., Vese, L.A.: Fast cartoon + texture image filters. IEEE Trans. Image Process. 19(8), 1978–1986 (2010). https://doi.org/10.1109/TIP.2010.2046605

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291

    Article  MATH  Google Scholar 

  10. Collins, D., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998). https://doi.org/10.1109/42.712135. https://brainweb.bic.mni.mcgill.ca/

  11. Collins, D., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998). https://doi.org/10.1109/42.712135

    Article  Google Scholar 

  12. De Simone, V., di Serafino, D., Gondzio, J., Pougkakiotis, S., Viola, M.: Sparse approximations with interior point methods. SIAM Rev. 64(4), 954–988 (2022). https://doi.org/10.1137/21M1401103

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehdasht-Heydari, R., Gholami, S.: Automatic seeded region growing (ASRG) using genetic algorithm for brain MRI segmentation. Wireless Pers. Commun. 109(2), 897–908 (2019). https://doi.org/10.1007/s11277-019-06596-4

    Article  Google Scholar 

  14. Grover, V.P., Tognarelli, J.M., Crossey, M.M., Cox, I.J., Taylor-Robinson, S.D., McPhail, M.J.: Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5, 246–55 (2015). https://doi.org/10.1016/j.jceh.2015.08.001

    Article  Google Scholar 

  15. Hao, X., et al.: Multimodal magnetic resonance imaging: the coordinated use of multiple, mutually informative probes to understand brain structure and function. Hum. Brain Mapp. 34(2), 253–71 (2013). https://doi.org/10.1002/hbm.21440

    Article  Google Scholar 

  16. Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theory Methods Appl. 2(4), 445–468 (2009). https://doi.org/10.4208/nmtma.2009.m9007s

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy C-means algorithm for brain MR image segmentation. Pattern Recogn. 47(7), 2454–2466 (2014). https://doi.org/10.1016/j.patcog.2014.01.017

    Article  Google Scholar 

  18. Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014). https://doi.org/10.1016/j.mri.2014.03.010

    Article  Google Scholar 

  19. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011). https://doi.org/10.1109/TIP.2011.2146190

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, F., Ng, M.K., Zeng, T.Y., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imag. Sci. 3(3), 277–299 (2010). https://doi.org/10.1137/080736752

    Article  MathSciNet  MATH  Google Scholar 

  21. Luque-Baena, R.M., Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. (2015). https://doi.org/10.1155/2015/450341

    Article  Google Scholar 

  22. Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for convex quadratic programming. Comput. Optim. Appl. 78(2), 307–351 (2021). https://doi.org/10.1007/s10589-020-00240-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Song, J., Zhang, Z.: Magnetic resonance imaging segmentation via weighted level set model based on local kernel metric and spatial constraint. Entropy 23(9), 1196 (2021). https://doi.org/10.3390/e23091196

    Article  MathSciNet  Google Scholar 

  24. Tarkhaneh, O., Shen, H.: An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst. Appl. 138, 1–18 (2019). https://doi.org/10.1016/j.eswa.2019.07.037

    Article  Google Scholar 

  25. Vandenberghe, S., Marsden, P.K.: PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys. Med. Biol. 60(4), R115 (2015). https://doi.org/10.1088/0031-9155/60/4/R115

    Article  Google Scholar 

  26. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007). https://doi.org/10.1109/TMI.2006.891486

    Article  Google Scholar 

Download references

Acknowledgments

L. Antonelli would like to thank Simona Sada (ICAR-CNR) for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Antonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antonelli, L., De Simone, V., Viola, M. (2023). Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics