Abstract
The segmentation of MRI is a challenging task due to artifacts introduced by the acquisition process, like bias field and noise. In this paper, using a cartoon-texture decomposition of the image, we present a strategy that segments the cartoon processed by simultaneous bias correction and denoising. Preliminary numerical tests show that our method is effective in segmenting MRI data corrupted by noise.
This work was partially supported by Istituto Nazionale di Alta Matematica - Gruppo Nazionale per il Calcolo Scientifico (INdAM-GNCS, ICAR-CNR INdAM Research Unit) and by the Italian Ministry of University and Research under grant no. PON03PE_00060_5.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angulakshmi, M., Deepa, M.: A review on deep learning architecture and methods for MRI brain tumour segmentation. Curr. Med. Imaging 17(6), 695–706 (2021). https://doi.org/10.2174/1573405616666210108122048
Antonelli, L., De Simone, V., di Serafino, D.: A view of computational models for image segmentation. Annali Dell’Università Di Ferrara 68, 277–294 (2022). https://doi.org/10.1007/s11565-022-00417-6
Antonelli, L., De Simone, V., Viola, M.: Cartoon-texture evolution for two-region image segmentation. Comput. Optim. Appl. 84(1), 5–26 (2023). https://doi.org/10.1007/s10589-022-00387-7
Antonelli, L., Guarracino, M.R., Maddalena, L., Sangiovanni, M.: Integrating imaging and omics data: a review. Biomed. Signal Process. Control 52, 264–280 (2019). https://doi.org/10.1016/j.bspc.2019.04.032
Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33, 261–274 (2010). https://doi.org/10.1007/s10462-010-9155-0
Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017). https://doi.org/10.1137/1.9781611974997
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016
Buades, A., Le, T.M., Morel, J., Vese, L.A.: Fast cartoon + texture image filters. IEEE Trans. Image Process. 19(8), 1978–1986 (2010). https://doi.org/10.1109/TIP.2010.2046605
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). https://doi.org/10.1109/83.902291
Collins, D., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998). https://doi.org/10.1109/42.712135. https://brainweb.bic.mni.mcgill.ca/
Collins, D., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998). https://doi.org/10.1109/42.712135
De Simone, V., di Serafino, D., Gondzio, J., Pougkakiotis, S., Viola, M.: Sparse approximations with interior point methods. SIAM Rev. 64(4), 954–988 (2022). https://doi.org/10.1137/21M1401103
Dehdasht-Heydari, R., Gholami, S.: Automatic seeded region growing (ASRG) using genetic algorithm for brain MRI segmentation. Wireless Pers. Commun. 109(2), 897–908 (2019). https://doi.org/10.1007/s11277-019-06596-4
Grover, V.P., Tognarelli, J.M., Crossey, M.M., Cox, I.J., Taylor-Robinson, S.D., McPhail, M.J.: Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5, 246–55 (2015). https://doi.org/10.1016/j.jceh.2015.08.001
Hao, X., et al.: Multimodal magnetic resonance imaging: the coordinated use of multiple, mutually informative probes to understand brain structure and function. Hum. Brain Mapp. 34(2), 253–71 (2013). https://doi.org/10.1002/hbm.21440
Houhou, N., Thiran, J.P., Bresson, X.: Fast texture segmentation based on semi-local region descriptor and active contour. Numer. Math. Theory Methods Appl. 2(4), 445–468 (2009). https://doi.org/10.4208/nmtma.2009.m9007s
Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy C-means algorithm for brain MR image segmentation. Pattern Recogn. 47(7), 2454–2466 (2014). https://doi.org/10.1016/j.patcog.2014.01.017
Li, C., Gore, J.C., Davatzikos, C.: Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014). https://doi.org/10.1016/j.mri.2014.03.010
Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011). https://doi.org/10.1109/TIP.2011.2146190
Li, F., Ng, M.K., Zeng, T.Y., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imag. Sci. 3(3), 277–299 (2010). https://doi.org/10.1137/080736752
Luque-Baena, R.M., Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. (2015). https://doi.org/10.1155/2015/450341
Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for convex quadratic programming. Comput. Optim. Appl. 78(2), 307–351 (2021). https://doi.org/10.1007/s10589-020-00240-9
Song, J., Zhang, Z.: Magnetic resonance imaging segmentation via weighted level set model based on local kernel metric and spatial constraint. Entropy 23(9), 1196 (2021). https://doi.org/10.3390/e23091196
Tarkhaneh, O., Shen, H.: An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst. Appl. 138, 1–18 (2019). https://doi.org/10.1016/j.eswa.2019.07.037
Vandenberghe, S., Marsden, P.K.: PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys. Med. Biol. 60(4), R115 (2015). https://doi.org/10.1088/0031-9155/60/4/R115
Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007). https://doi.org/10.1109/TMI.2006.891486
Acknowledgments
L. Antonelli would like to thank Simona Sada (ICAR-CNR) for her technical support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Antonelli, L., De Simone, V., Viola, M. (2023). Segmenting MR Images Through Texture Extraction and Multiplicative Components Optimization. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-31975-4_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31974-7
Online ISBN: 978-3-031-31975-4
eBook Packages: Computer ScienceComputer Science (R0)