Skip to main content

Image Blending with Osmosis

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

Image blending is an integral part of many multi-image applications such as panorama stitching or remote image acquisition processes. In such scenarios, multiple images are connected at predefined boundaries to form a larger image. A convincing transition between these boundaries may be challenging, since each image might have been acquired under different conditions or even by different devices.

We propose the first blending approach based on osmosis filters. These drift-diffusion processes define an image evolution with a non-trivial steady state. For our blending purposes, we explore several ways to compose drift vector fields based on the derivatives of our input images. These vector fields guide the evolution such that the steady state yields a convincing blended result. Our method benefits from the well-founded theoretical results for osmosis, which include useful invariances under multiplicative changes of the colour values. Experiments on real-world data show that this yields better quality than traditional gradient domain blending, especially under challenging illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://hugin.sourceforge.io/.

References

  1. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2(4), 217–236 (1983)

    Article  Google Scholar 

  2. d’Autume, M., Morel, J.M., Meinhardt-Llopis, E.: A flexible solution to the osmosis equation for seamless cloning and shadow removal. In: Proceedings of 2018 IEEE International Conference on Image Processing, Athens, Greece, pp. 2147–2151 (2018)

    Google Scholar 

  3. Efros, A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, pp. 341–346 (2001)

    Google Scholar 

  4. Fang, F., Wang, T., Fang, Y., Zhang, G.: Fast color blending for seamless image stitching. IEEE Geosci. Remote Sens. Lett. 16(7), 1115–1119 (2019)

    Article  Google Scholar 

  5. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proceedings of SIGGRAPH 2002, San Antonio, TX, pp. 249–256 (2002)

    Google Scholar 

  6. Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  7. Georgiev, T.: Covariant derivatives and vision. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 56–69. Springer, Heidelberg (2006). https://doi.org/10.1007/11744085_5

    Chapter  Google Scholar 

  8. Gracias, N., Mahoor, M., Negahdaripour, S., Gleason, A.: Fast image blending using watersheds and graph cuts. Image Vis. Comput. 27(5), 597–607 (2009)

    Article  Google Scholar 

  9. Hagenburg, K., Breuß, M., Vogel, O., Weickert, J., Welk, M.: A lattice Boltzmann model for rotationally invariant dithering. In: Bebis, G., et al. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 949–959. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10520-3_91

    Chapter  Google Scholar 

  10. Hagenburg, K., Breuß, M., Weickert, J., Vogel, O.: Novel schemes for hyperbolic PDEs using osmosis filters from visual computing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 532–543. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_45

    Chapter  Google Scholar 

  11. Illner, R., Neunzert, H.: Relative entropy maximization and directed diffusion equations. Math. Methods Appl. Sci. 16, 545–554 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_31

    Chapter  Google Scholar 

  13. Meister, A.: Numerik linearer Gleichungssysteme, 5th edn. Vieweg, Braunschweig (2015)

    Book  MATH  Google Scholar 

  14. Parisotto, S., Calatroni, L., Bugeau, A., Papadakis, N., Schönlieb, C.B.: Variational osmosis for non-linear image fusion. IEEE Trans. Image Process. 29, 5507–5516 (2020)

    Article  MATH  Google Scholar 

  15. Parisotto, S., Calatroni, L., Caliari, M., Schönlieb, C.B., Weickert, J.: Anisotropic osmosis filtering for shadow removal in images. Inverse Probl. 35(5), Article 054001 (2019)

    Google Scholar 

  16. Parisotto, S., Calatroni, L., Daffara, C.: Digital cultural heritage imaging via osmosis filtering. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 407–415. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_44

    Chapter  Google Scholar 

  17. Pérez, P., Gagnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003)

    Article  Google Scholar 

  18. Risken, H.: The Fokker-Planck Equation. Springer, New York (1984)

    Book  MATH  Google Scholar 

  19. Schmidt, M.: Linear scale-spaces in image processing: drift-diffusion and connections to mathematical morphology. Ph.D. thesis, Department of Mathematics, Saarland University, Saarbrücken, Germany (2018)

    Google Scholar 

  20. Sevcenco, I.S., Hampton, P.J., Agathoklis, P.: Seamless stitching of images based on a Haar wavelet 2D integration method. In: Proceedings of 17th International Conference on Digital Signal Processing, Kanoni, Greece (2011)

    Google Scholar 

  21. Sochen, N.A.: Stochastic processes in vision: from Langevin to Beltrami. In: Proceedings of Eighth International Conference on Computer Vision, Vancouver, Canada, vol. 1, pp. 288–293. IEEE Computer Society Press (2001)

    Google Scholar 

  22. Uyttendaele, M., Eden, A., Skeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, pp. 509–516 (2001)

    Google Scholar 

  23. Vogel, O., Hagenburg, K., Weickert, J., Setzer, S.: A fully discrete theory for linear osmosis filtering. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 368–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38267-3_31

    Chapter  Google Scholar 

  24. Weickert, J., Hagenburg, K., Breuß, M., Vogel, O.: Linear osmosis models for visual computing. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 26–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_3

    Chapter  Google Scholar 

  25. Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: towards realistic high-resolution image blending. In: Proceedings of 27th ACM International Conference on Multimedia, Nice, France, pp. 2487–2495 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bungert, P., Peter, P., Weickert, J. (2023). Image Blending with Osmosis. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics