Abstract
In this paper, we apply a scale space analysis method to digital geometry. We deal with the reconstruction of Euclidean polylines controlling the size of pixels in discrete space. Numerical examples show that the size of pixels of digital geometry processes the scale for the hierarchical reconstruction of Euclidean objects from digital objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rosenfeld, A., Klette, R.: Digital Geometry: Geometric Methods for Digital Image Analysis (The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann, San Diego (2004)
Bruckstein, A.M.: Digital geometry in image-based metrology. In: Brimkov, V., Barneva, R. (eds.) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol. 2. Springer, Cham (2012). https://doi.org/10.1007/978-94-007-4174-4_1
Imiya, A., Sato, K.: Shape from silhouettes in discrete space. In: Brimkov, V., Barneva, R. (eds.) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol. 2. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4174-4_11
Coeurjolly, D., Zerarga, L.: Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids. Comput. Graph. 30, 46–53 (2006). https://doi.org/10.1016/j.cag.2005.10.009
Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: SCG 2000: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp. 213–222 (2000). https://doi.org/10.1145/336154.336207
Karasick, M., Lieber, D., Nackman, L.: Efficient Delaunay triangulation using rational arithmetic. ACM Trans. Graph. 10, 71–91 (1991)
Alefeld, G., Mayer, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000). https://doi.org/10.1016/S0377-0427(00)00342-3
Ratschek, H.J., Rokne, J.: Geometric Computations with Interval and New Robust Methods Applications in Computer Graphics, GIS and Computational Geometry. Woodhead Publishing Limited (2003)
Vacavant, A., Roussillon, T., Kerautret, B., Lachaud, J.-O.: A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours. CVIU 117, 438–450 (2013). https://doi.org/10.1016/j.cviu.2012.07.006
Vacavant, A.: Fast distance transformation on two-dimensional irregular grids. Pattern Recogn. 43, 3348–3358 (2010). https://doi.org/10.1016/j.patcog.2010.04.018
Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986). https://doi.org/10.4310/jdg/1214439902
Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26, 285–314 (1987). https://doi.org/10.4310/jdg/1214441371
Bruckstein, A.M., Sapiro, G., Shaked, D.: Evolutions of planar polygons. IJPRAI 9, 991–1014 (1995). https://doi.org/10.1142/S0218001495000407
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press (1983)
Barrodale, I., Roberts, F.D.K.: An improved algorithm for discrete \(l_1\) linear approximation. SIAM J. Numer. Anal. 10, 839–848 (1973). https://www.jstor.org/stable/2156318
Wstson, G.A.: Approximation in normed linear spaces. J. Comput. Appl. Math. 121, 1–36 (2000). https://doi.org/10.1016/S0377-0427(00)00333-2
Matouǎek, J., Gärtner, B.: Understanding and using linear programming. Springer (2007). https://doi.org/10.1007/978-3-540-30717-4
Imai, H., Kato, K., Yamamoto, P.: A linear-time algorithm for linear \(L_1\) approximation of points. Algorithmica 4, 77–96 (1989). https://doi.org/10.1007/BF01553880
Aronov, B., Asano, T., Katoh, N., Mehlhorn, K., Tokuyama, T.: Polyline fitting of planar points under min-sum criteria. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 77–88. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4_9
Acknowledgement
This research was supported by the Grants-in-Aid for Scientific Research funded by the Japan Society for the Promotion of Science, under 20K11881.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tosaka, K., Imiya, A. (2023). \(\alpha \)-Pixels for Hierarchical Analysis of Digital Objects. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_51
Download citation
DOI: https://doi.org/10.1007/978-3-031-31975-4_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-31974-7
Online ISBN: 978-3-031-31975-4
eBook Packages: Computer ScienceComputer Science (R0)