Skip to main content

Limited Electrodes Models in Electrical Impedance Tomography Reconstruction

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 905 Accesses

Abstract

We state the Limited Electrode problem in Electrical Impedance Tomography, and propose solutions inspired by the application of compressed sensing techniques and deep learning strategies on the raw boundary impedance data. These strategies allow to recover the target reconstruction quality while using a relatively low number of nonlinear measurements, assuming sparsity-gradient conductivity. This would help reducing modelling costs and computational power, thus enhancing applicability of EIT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberti, G.S., Santacesaria, M.: Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma. 7, e35 (2019). https://doi.org/10.1017/fms.2019.31

  2. Alberti, G.S., Santacesaria, M.: Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE. Appl. Comput. Harmon. Anal. 50, 105–146 (2021). https://doi.org/10.1016/j.acha.2019.08.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Blumensath, T.: Compressed sensing with nonlinear observations and related nonlinear optimization problems. IEEE Trans. Inf. Theory. 59(6), 3466–3474, 2245716 (2013). https://doi.org/10.1109/TIT.2013

  4. Borsic, A., et al.: In Vivo impedance imaging with total variation regularization. IEEE Trans. Med. Imaging. 29(1), 44–54 (2010). https://doi.org/10.1109/TMI.2009.2022540

  5. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). https://doi.org/10.1002/cpa.20124

  6. Colibazzi, F., Lazzaro, D., Morigi, S., Samoré, A.: Learning nonlinear electrical impedance tomography. J. Sci. Comput. 90(1), 1–23 (2021). https://doi.org/10.1007/s10915-021-01716-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Cortesi, M., et al.: Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds. Physiol. Measur. 42(6), 064001 (2021). https://doi.org/10.1088/1361-6579/ac023b

  8. Harrach, B.: Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Prob. 35(2), 024005 (2019). https://doi.org/10.1088/1361-6420/aaf6fc

  9. Jauhiainen, J., et al.: Relaxed Gauss-Newton methods with applications to electrical impedance tomography. SIAM J. Imaging Sci. 13(3), 1415–1445 (2020). https://doi.org/10.1137/20M1321711

  10. Somersalo, E., Cheney, M., Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52(4), 1023–1040 (1992). https://doi.org/10.1137/0152060

  11. Tallman, T.N., Smyl, D.J.: Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. Smart Mater. Struct. 29(12), 123001 (2020). https://doi.org/10.1088/1361-665X/abb352

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damiana Lazzaro .

Editor information

Editors and Affiliations

7.1 Appendix: regularized Gauss-Newton method for the inverse EIT problem

7.1 Appendix: regularized Gauss-Newton method for the inverse EIT problem

Given a nonlinear residual \(r(\sigma )\), the ill-posedness of problem (1) can be alleviated by adding to the cost function a regularization term \(R(\sigma )\), which stabilizes the solution

$$\begin{aligned} \sigma ^* \, \in \, \arg \min _{\sigma \in {\mathbb R}^{n_T}} \Vert r(\sigma ) \Vert _2^2+ \frac{\alpha }{2} R(\sigma ), \end{aligned}$$
(7)

with \(\alpha >0\) the regularization parameter. An approximated solution of the unconstrained regularized nonlinear minimization problem (7) can be obtained by applying the iterative Regularized Gauss-Newton (RGN) method, which, starting from an initial guess \(\sigma ^{(0)}\), performs a line search along the direction \(p^{(k)}\) to obtain the new conductivity iterate \(\sigma ^{(k+1)}= \sigma ^{(k)} + p^{(k)}\), following the search direction \(p^{(k)}\) from the current iterate.

For the choice \(R(\sigma ):= \Vert \nabla \sigma \Vert _2^2\), the functional in (7) is the classical generalized nonlinear Tikhonov model, a standard choice in EIT [4], and the (RGN) method can be applied with \(p^{(k)}\) determined by solving the linear normal equations

$$\begin{aligned} ( J(\sigma ^{(k)})^T J(\sigma ^{(k)}) + \alpha L^TL)p&= J(\sigma ^{(k)})^T r(\sigma ) - \alpha L^TL \sigma ^{(k)}, \end{aligned}$$
(RGN-Tik)

where \(L^TL \in {\mathbb R}^{n_T \times n_T}\) denotes the Laplacian. In case the total variation regularizer \(R(\sigma )=\Vert \nabla \sigma \Vert _1 \) is considered, we can resort to the discretization presented in [4], with \(R(\sigma ) \approx D^TE^{-1}D\), with D denoting the discrete gradient, and \(E=1/diag(\sqrt{(D\sigma )^2+\epsilon ^2})\), \(\bar{D}=\sqrt{E} D\). The direction \(p^{(k)}\) is then obtained by solving the linear normal equations

$$\begin{aligned} ( J(\sigma ^{(k)})^T J(\sigma ^{(k)}) + \alpha \bar{D}^T\bar{D} )p&= J(\sigma ^{(k)})^T r(\sigma ) - \alpha \bar{D}^T\bar{D} \sigma ^{(k)}. \end{aligned}$$
(RGN-TV)

The linear systems in RGN-Tik and RGN-TV are solved by a few iterations of the conjugate gradient method.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colibazzi, F., Lazzaro, D., Morigi, S., Samorè, A. (2023). Limited Electrodes Models in Electrical Impedance Tomography Reconstruction. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics