Skip to main content

Design of a Novel Reconfigurable Wearable Antenna Based on Textile Materials and Snap-on Buttons

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2022)

Abstract

A novel wearable reconfigurable patch antenna is presented for wireless body-area applications at 2.4 GHz industrial, scientific, and medical (ISM) band. Textile and clothing materials are solely employed within the wearable antenna design process and reconfiguration mechanism. Specifically, by engaging or disengaging four pairs of metallic snap-on buttons, the textile antenna can exhibit an omnidirectional radiation pattern with linear polarization or a broadside radiation pattern with circular polarization enabling both on- and off-body wireless communication, respectively. A multi-layer tissue phantom is applied to emulate a realistic wearing environment. The resonance and radiation performance characteristics of the proposed antenna are examined in both radiation states. A parametric analysis regarding key design parameters is conducted. The specific absorption rate (SAR) is, also, assessed in terms of safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall, P.S., et al.: Antennas and propagation for on-body communication systems. IEEE Antennas Propag. Mag. 49(3), 41–58 (2007)

    Article  Google Scholar 

  2. Zhu, X., Guo, Y., Wu, W.: Miniaturized dual-band and dual-polarized antenna for MBAN applications. IEEE Trans. Antennas Propag. 64(7), 2805–2814 (2016)

    Article  Google Scholar 

  3. Mohamadzade, B., et al.: A conformal, dynamic pattern-reconfigurable antenna using conductive textile-polymer composite. IEEE Trans. Antennas Propag. 69(10), 6175–6184 (2021)

    Article  Google Scholar 

  4. Yan, S., Vandenbosch, G.A.E.: Radiation pattern-reconfigurable wearable antenna based on metamaterial structure. IEEE Antennas Wirel. Propag. Lett. 15, 1715–1718 (2016)

    Article  Google Scholar 

  5. Ha, S., Jung, C.W.: Reconfigurable beam steering using a microstrip patch antenna with a U-slot for wearable fabric applications. IEEE Antennas Wirel. Propag. Lett. 10, 1228–1231 (2011)

    Article  Google Scholar 

  6. Chen, S.J., Ranasinghe, D.C., Fumeaux, C.: Snap-on buttons as detachable shorting vias for wearable textile antennas. In: Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 521–524 (2016)

    Google Scholar 

  7. Tsolis, A., Michalopoulou, A., Alexandridis, A.A.: Use of conductive zip and Velcro as a polarisation reconfiguration means of a textile patch antenna. IET Microw. Antennas Propag. 14, 684–693 (2020)

    Article  Google Scholar 

  8. Chen, S.J., Fumeaux, C., Ranasinghe, D.C., Kaufmann, T.: Paired snap-on buttons connections for balanced antennas in wearable systems. IEEE Antennas Wirel. Propag. Lett. 14, 1498–1501 (2015)

    Article  Google Scholar 

  9. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)

    Google Scholar 

  10. Hall, P.S., Hao, Y.: Antennas and Propagation for Body-Centric Wireless Communications, 2nd edn. Artech House, Norwood (2012)

    Google Scholar 

  11. IEEE standard for safety levels with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Standard C95.1 (1999)

    Google Scholar 

Download references

Acknowledgment

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers”, Project Number: 205, with title “Innovative Textile Structures for Mechanical Electromagnetic Reconfigurability of Wearable Antennas” (M-REWEAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Bakogianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakogianni, S., Tsolis, A., Alexandridis, A. (2023). Design of a Novel Reconfigurable Wearable Antenna Based on Textile Materials and Snap-on Buttons. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32029-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32028-6

  • Online ISBN: 978-3-031-32029-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics