Skip to main content

A Platform Architecture for m-Health Internet of Things Applications

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2022)

Abstract

In the last few years, several researchers have been focusing their research work on some specific applications of the Internet of Things, such as the Health Internet of Things (m-Health IoT). As in other IoT applications, integrating IoT devices and applications/platforms from different manufacturers/developers in Health-IoT can be challenging. Even though standards are available and used, there are many possible standards and different devices use different communication protocols and data formats. Also, the integration leads to the need to develop new ad hoc code that will fit only that particular integration. This paper presents a proposal for a platform that uses a modular architecture and enables the seamless integration of different components of an m-health IoT platform. Components can be dynamically added or removed from the platform, in run-time without impacting the already existing components and without the need of downtime of the platform to include the new components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almotiri, S.H., Khan, M.A., Alghamdi, M.A.: Mobile health (m-Health) system in the context of IoT. In: Proceedings - 2016 4th International Conference on Future Internet of Things and Cloud Workshops, W-FiCloud 2016, pp. 39–42 (2016). https://doi.org/10.1109/W-FiCloud.2016.24

  2. Bhuiyan, M.N., Rahman, M.M., Billah, M.M., Saha, D.: Internet of things (IoT): a review of its enabling technologies in healthcare applications, standards protocols, security, and market opportunities. IEEE Internet Things J. 8(13), 10474–10498 (2021). https://doi.org/10.1109/JIOT.2021.3062630

    Article  Google Scholar 

  3. Borges, M., Paiva, S., Santos, A., Gaspar, B., Cabral, J.: Azure RTOS ThreadX design for low-End NB-IoT device. In: Proceedings - 2020 2nd International Conference on Societal Automation, SA 2020 (2020). https://doi.org/10.1109/SA51175.2021.9507191

  4. Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B.: CoAP (constrained application protocol) over TCP, TLS, and WebSockets. Technical report (2018). https://doi.org/10.17487/RFC8323, https://www.rfc-editor.org/info/rfc8323

  5. Das, A., Katha, S.D., Sadi, M.S., Ferdib-Al-Islam: an IoT enabled health monitoring kit using non-invasive health parameters. In: 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0, ACMI 2021 (July), pp. 8–9 (2021). https://doi.org/10.1109/ACMI53878.2021.9528227

  6. Kanj, M., Savaux, V., Le Guen, M.: A tutorial on NB-IoT physical layer design. IEEE Commun. Surv. Tutor. 22(4), 2408–2446 (2020). https://doi.org/10.1109/COMST.2020.3022751

    Article  Google Scholar 

  7. Khalifeh, A., Aldahdouh, K., Darabkh, K.A., Al-sit, W.: A survey of 5G emerging wireless technologies. In: 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), pp. 561–566 (2019)

    Google Scholar 

  8. Lee, E., Seo, Y.D., Oh, S.R., Kim, Y.G.: A survey on standards for interoperability and security in the internet of things. IEEE Commun. Surv. Tutor. 23(2), 1020–1047 (2021). https://doi.org/10.1109/COMST.2021.3067354

    Article  Google Scholar 

  9. Liu, J., Miao, F., Yin, L., Pang, Z., Li, Y.: A noncontact ballistocardiography-based IoMT system for cardiopulmonary health monitoring of discharged COVID-19 patients. IEEE Internet Things J. 8(21), 15807–15817 (2021)

    Article  Google Scholar 

  10. Monteiro, K., Rocha, E., Silva, E., Santos, G.L., Santos, W., Endo, P.T.: Developing an e-health system based on IoT, fog and cloud computing. In: Proceedings - 11th IEEE/ACM International Conference on Utility and Cloud Computing Companion, UCC Companion 2018, pp. 17–18 (2019). https://doi.org/10.1109/UCC-Companion.2018.00024

  11. Paiva, S., Branco, S., Cabral, J.: Design and power consumption analysis of a NB-IoT end device for monitoring applications. In: IECON Proceedings (Industrial Electronics Conference), vol. 2020-Octob, pp. 2175–2182 (2020). https://doi.org/10.1109/IECON43393.2020.9254374

  12. Pathinarupothi, R.K., Durga, P., Rangan, E.S.: IoT-based smart edge for global health: remote monitoring with severity detection and alerts transmission. IEEE Internet Things J. 6(2), 2449–2462 (2019). https://doi.org/10.1109/JIOT.2018.2870068, https://ieeexplore.ieee.org/document/8464257/

  13. Pinto, A., Correia, A., Alves, R., Matos, P., Ascensão, J., Camelo, D.: eHealthCare - a medication monitoring approach for the elderly people. In: Gao, X., Jamalipour, A., Guo, L. (eds.) MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 440, pp. 221–234. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06368-8_15

  14. Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., Markakis, E.K.: A survey on the internet of things (IoT) forensics: challenges, approaches, and open issues. IEEE Commun. Surv. Tutor. 22(2), 1191–1221 (2020). https://doi.org/10.1109/COMST.2019.2962586

    Article  Google Scholar 

  15. Wu, F., Wu, T., Yuce, M.R.: Design and implementation of a wearable sensor network system for IoT-connected safety and health applications. In: IEEE 5th World Forum on Internet of Things, WF-IoT 2019 - Conference Proceedings, pp. 87–90 (2019). https://doi.org/10.1109/WF-IoT.2019.8767280

  16. Yang, G., et al.: A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Industr. Inf. 10(4), 2180–2191 (2014). https://doi.org/10.1109/TII.2014.2307795

    Article  Google Scholar 

Download references

Acknowledgements

Project “(Link4S)ustainability - A new generation connectivity system for creation and integration of networks of objects for new sustainability paradigms [POCI-01-0247-FEDER-046122—LISBOA-01-0247-FEDER-046122]” is financed by the Operational Competitiveness and Internationalization Programmes COMPETE 2020 and LISBOA 2020, under the PORTUGAL 2020 Partnership Agreement, and through the European Structural and Investment Funds in the FEDER component.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Mestre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mestre, P. et al. (2023). A Platform Architecture for m-Health Internet of Things Applications. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32029-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32028-6

  • Online ISBN: 978-3-031-32029-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics