Skip to main content

Artificial Intelligence Based Procedural Content Generation in Serious Games for Health: The Case of Childhood Obesity

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2022)

Abstract

This paper presents a novel Procedural Content Generation (PCG) method aiming at achieving personalization and adaptation in serious games (SG) for health. The PCG method is based on a genetic algorithm (GA) and provides individualized content in the form of tailored messages and SG missions, taking into consideration data collected from health-related sensors and user interaction with the SG. The PCG method has been integrated into the ENDORSE platform, which harnesses the power of artificial intelligence (AI), m-health and gamification mechanisms, towards implementing a multicomponent (diet, physical activity, educational, behavioral) intervention for the management of childhood obesity. Within the use of the ENDORSE platform, a pre-pilot study has been conducted, involving the recruitment of 20 obese children that interacted with the platform for a period of twelve weeks. The obtained results, provide a preliminary justification of PCG’s effectiveness in terms of generating individualized content with sufficient relevance and usefulness. Additionally, a statistically significant correlation has been revealed between the content provided by the proposed PCG technique and lifestyle-related sensing data, highlighting the potential of the PCG’s capabilities in identifying and addressing the needs of a specific user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djaouti, D., Alvarez, J., Jessel, J.-P.: Classifying serious games: the G/P/S model. In: Handbook of Research on Improving Learning and Motivation Through Educational Games: Multidisciplinary Approaches. IGI global (2011)

    Google Scholar 

  2. Chow, C.Y., Riantiningtyas, R.R., Kanstrup, M.B., Papavasileiou, M., Liem, G.D., Olsen, A.: Can games change children’s eating behaviour? A review of gamification and serious games. Food Qual. Prefer. 80, 103823 (2020)

    Article  Google Scholar 

  3. Mitsis, K., Zarkogianni, K., Dalakleidi, K., Mourkousis, G., Nikita, K.S.: Evaluation of a serious game promoting nutrition and food literacy: experiment design and preliminary results. In 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE) (2019)

    Google Scholar 

  4. Sterkenburg, P.S., Vacaru, V.S.: The effectiveness of a serious game to enhance empathy for care workers for people with disabilities: a parallel randomized controlled trial. Disabil. Health J. 11(4), 576–582 (2018)

    Article  Google Scholar 

  5. Lievense, P., Vacaru, V.S., Liber, J., Bonnet, M., Sterkenburg, P.S.: “Stop bullying now!” Investigating the effectiveness of a serious game for teachers in promoting autonomy-supporting strategies for disabled adults: a randomized controlled trial. Disabil. Health J. 12(2), 310–317 (2019)

    Article  Google Scholar 

  6. Orji, R., Vassileva, J., Mandryk, R.L.: Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Model. User-Adap. Inter. 24(5), 453–498 (2014). https://doi.org/10.1007/s11257-014-9149-8

    Article  Google Scholar 

  7. Sajjadi, P., Ewais, A., De Troyer, O.: Individualization in serious games: a systematic review of the literature on the aspects of the players to adapt to. Entertain. Comput. 41, 100468 (2022)

    Article  Google Scholar 

  8. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is procedural content generation? Mario on the borderline. In Proceedings of the 2nd International Workshop on Procedural Content Generation in Games. Association for Computing Machinery, New York (2011)

    Google Scholar 

  9. Ahmad, S., Mehmood, F., Khan, F., Whangbo, T.K.: Architecting intelligent smart serious games for healthcare applications: a technical perspective. Sensors 22(3), 810 (2022)

    Article  Google Scholar 

  10. Mitsis, K., et al.: A multimodal approach for real time recognition of engagement towards adaptive serious games for health. Sensors 22(7), 2472 (2022)

    Article  Google Scholar 

  11. Pereira, Y.H., Ueda, R., Galhardi, L.B., Brancher, J.D.: Using procedural content generation for storytelling in a serious game called orange care. In: 2019 18th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames) (2019)

    Google Scholar 

  12. Carlier, S., Van der Paelt, S., Ongenae, F., De Backere, F., De Turck, F.: Empowering children with ASD and their parents: design of a serious game for anxiety and stress reduction. Sensors 20(4), 966 (2020)

    Article  Google Scholar 

  13. Bermúdez i Badia, S., et al.: Toward emotionally adaptive virtual reality for mental health applications. IEEE J. Biomed. Health Inform. 23(5), 1877–1887 (2019)

    Google Scholar 

  14. Esfahlani, S., Thompson, T.: Intelligent Physiotherapy through procedural content generation. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 12, no. 2, pp. 27–30 (2016)

    Google Scholar 

  15. Mitsis, K., Kalafatis, E., Zarkogianni, K., Mourkousis, G., Nikita, K.S.: Procedural content generation based on a genetic algorithm in a serious game for obstructive sleep apnea. In: 2020 IEEE Conference on Games (CoG) (2020)

    Google Scholar 

  16. Vasilakis, I.A., et al.: The ENDORSE Feasibility pilot trial: assessing the implementation of serious games strategy and artificial intelligence-based telemedicine in glycemic control improvement‬. In: Diabetes Technology & Therapeutics, vol. 24, MARY ANN LIEBERT (2022).‬‬‬

    Google Scholar 

  17. Dontje, M.L., de Groot, M., Lengton, R.R., van der Schans, C.P., Krijnen, W.P.: Measuring steps with the Fitbit activity tracker: an inter-device reliability study. J. Med. Eng. Technol. 39(5), 286–290 (2015)

    Article  Google Scholar 

  18. Shultz, S.P., Browning, R.C., Schutz, Y., Maffeis, C., Hills, A.P.: Childhood obesity and walking: guidelines and challenges. Int. J. Pediatr. Obes. 6(5–6), 332–341 (2011)

    Article  Google Scholar 

  19. Hirshkowitz, M., et al.: National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health 1(1), 40–43 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported within the framework of the ENDORSE project, which is funded by the NSRF. Grant agreement: T1EΔΚ-03695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios Kalafatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalafatis, E. et al. (2023). Artificial Intelligence Based Procedural Content Generation in Serious Games for Health: The Case of Childhood Obesity. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32029-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32028-6

  • Online ISBN: 978-3-031-32029-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics