Skip to main content

Prediction of Ventricular Tachyarrhythmia Using Deep Learning

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2022)

Abstract

Ventricular tachyarrhythmia (VTA), mainly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the major causes of sudden cardiac death in the world. This work uses deep learning, more precisely, LSTM and biLSTM networks to predict VTA events. The Spontaneous Ventricular Tachyarrhythmia Database from PhysioNET was chosen, which contains 78 patients, 135 VTA signals, and 135 control rhythms. After the pre-processing of these signals and feature extraction, the classifiers were able to predict whether a patient was going to suffer a VTA event or not. A better result using a biLSTM was obtained, with a 5-fold-cross-validation, reaching an accuracy of 96.30%, 94.07% of precision, 98.45% of sensibility, and 96.17% of F1-Score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Electrophysiology, task force of the European society of cardiology the north American society of pacing: heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (1996)

    Google Scholar 

  2. Faust, O., Shenfield, A., Kareem, M., San, T.R., Fujita, H., Acharya, U.R.: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Biol. Med. 102, 327–335 (2018)

    Article  Google Scholar 

  3. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  4. Joo, S., Choi, K.J., Huh, S.J.: Prediction of ventricular tachycardia by a neural network using parameters of heart rate variability. In: 2010 Computing in Cardiology, pp. 585–588. IEEE (2010)

    Google Scholar 

  5. Karal, Ö.: Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–5. IEEE (2020)

    Google Scholar 

  6. Monteiro, S., Leite, A., Solteiro Pires, E.J.: Deep learning on automatic fall detection. In: 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6 (2021). https://doi.org/10.1109/LA-CCI48322.2021.9769783

  7. Parsi, A., O’Loughlin, D., Glavin, M., Jones, E.: Prediction of sudden cardiac death in implantable cardioverter defibrillators: a review and comparative study of heart rate variability features. IEEE Rev. Biomed. Eng. 13, 5–16 (2019)

    Article  Google Scholar 

  8. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: Interdisc. J. Nonlin. Sci. 5(1), 82–87 (1995)

    Google Scholar 

  9. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Riasi, A., Mohebbi, M.: Prediction of ventricular tachycardia using morphological features of ECG signal. In: 2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 170–175. IEEE (2015)

    Google Scholar 

  11. Sanghera, R., Sanders, R., Husby, M., Bentsen, J.G.: Development of the subcutaneous implantable cardioverter-defibrillator for reducing sudden cardiac death. Ann. N. Y. Acad. Sci. 1329(1), 1–17 (2014)

    Article  Google Scholar 

  12. Sengupta, S., et al.: Emotion specification from musical stimuli: an EEG study with AFA and DFA. In: 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 596–600. IEEE (2017)

    Google Scholar 

  13. Siami-Namini, S., Tavakoli, N., Namin, A.S.: The performance of LSTM and BiLSTM in forecasting time series. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3285–3292. IEEE (2019)

    Google Scholar 

  14. Taye, G.T., Hwang, H.J., Lim, K.M.: Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features. Sci. Rep. 10(1), 1–7 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Solteiro Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbosa, D., Pires, E.J.S., Leite, A., Oliveira, P.B.d.M. (2023). Prediction of Ventricular Tachyarrhythmia Using Deep Learning. In: Cunha, A., M. Garcia, N., Marx Gómez, J., Pereira, S. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-031-32029-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32029-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32028-6

  • Online ISBN: 978-3-031-32029-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics