Abstract
Realizing the promised advantage of quantum computers over classical computers requires both physical devices and corresponding methods for the design, verification and analysis of quantum circuits. In this regard, decision diagrams have proven themselves to be an indispensable tool due to their capability to represent both quantum states and unitaries (circuits) compactly. Nonetheless, recent results show that decision diagrams can grow to exponential size even for the ubiquitous stabilizer states, which are generated by Clifford circuits. Since Clifford circuits can be efficiently simulated classically, this is surprising. Moreover, since Clifford circuits play a crucial role in many quantum computing applications, from networking, to error correction, this limitation forms a major obstacle for using decision diagrams for the design, verification and analysis of quantum circuits. The recently proposed Local Invertible Map Decision Diagram (LIMDD) solves this problem by combining the strengths of decision diagrams and the stabilizer formalism that enables efficient simulation of Clifford circuits. However, LIMDDs have only been introduced on paper thus far and have not been implemented yet—preventing an investigation of their practical capabilities through experiments. In this work, we present the first implementation of LIMDDs for quantum circuit simulation. A case study confirms the improved performance in both worlds for the Quantum Fourier Transform applied to a stabilizer state. The resulting package is available under a free license at https://github.com/cda-tum/ddsim/tree/limdd.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Symposium on Theory of Computing, pp. 212–219 (1996). https://doi.org/10.1145/237814.237866
Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theor. Comput. 14(1), 1–24 (2018)
Ambainis, A., Gilyén, A., Jeffery, S., Kokainis, M.: Quadratic speedup for finding marked vertices by quantum walks. In: Symposium on Theory of Computing, pp. 412–424 (2020)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997). https://doi.org/10.1137/S0097539795293172
Lanyon, B.P., et al.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2(2), 106 (2010)
Burgholzer, L., Kueng, R., Wille, R.: Random stimuli generation for the verification of quantum circuits. In: Asia and South Pacific Design Automation Conference, pp. 767–772, New York, NY, USA,: Association for Computing Machinery. ISBN 9781450379991 (2021)
Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits. IEEE Trans. on CAD Integr. Circ. Sys., 40(9):1810–1824 (2021). https://doi.org/10.1109/TCAD.2020.3032630
Burgholzer, L., Raymond, R., Wille, R.: Verifying results of the IBM Qiskit quantum circuit compilation flow. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 356–365. IEEE (2020)
Carette, J., Ortiz, G., Sabry, A.: Symbolic execution of hadamard-toffoli quantum circuits. In: Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation, pp. 14–26 (2023)
Guerreschi, G.G., Matsuura, A.Y.: Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Scientific Reports, 9(1), 6903 (2019). ISSN 2045–2322. https://doi.org/10.1038/s41598-019-43176-9
Jones, T., Brown, A., Bush, I., Benjamin, S.C.: Quest and high performance simulation of quantum computers. Scientific Reports, 9(1), 10736 (2019). ISSN 2045–2322. https://doi.org/10.1038/s41598-019-47174-9
Gottesman, D.: Stabilizer codes and quantum error correction (1997)
Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)
Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)
Gottesman, D.: Stabilizer codes and quantum error correction. California Institute of Technology (1997)
Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A, 53, (1996). https://doi.org/10.1103/PhysRevA.53.2046
Browne, D., Briegel, H.: One-way quantum computation. Quantum information: From foundations to quantum technology applications, pp. 449–473 (2016)
Dijk, T.M., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules from different decision diagram types. In: Stewart, D., Weissenbacher, G., editors, Formal Methods in CAD, 2017. https://doi.org/10.23919/FMCAD.2017.8102248
Minato, S.: Zero-suppressed BDDs for set manipulation in combinational problems. In: Design Automation Conference, pp. 272–277 (1993)
Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical representation. In: Design Automation Conference, pp. 688–694 (1985)
Bryant, R.E., Chen, Y.A.: Verification of arithmetic circuits with binary moment diagrams. In: Design Automation Conference, pp. 535–541 (1995)
Drechsler, R., Sarabi, A., Theobald, M., Becker, B., Perkowski, M.A.: Efficient representation and manipulation of switching functions based on Ordered Kronecker Functional Decision Diagrams. In: Lorenzetti, M.J., editor, Design Automation Conference, pp. 415–419 (1994). https://doi.org/10.1145/196244.196444
Abdollahi, A., Pedram, M.: Analysis and synthesis of quantum circuits by using quantum decision diagrams. In: Design, Automation and Test in Europe, pp. 317–322 (2006)
Wang, S.-A., Lu, C.-Y., Tsai, I.-M., Kuo, S.-Y.: An XQDD-based verification method for quantum circuits. IEICE Trans. Fundamentals, 91-A(2), 584–594 (2008)
Viamontes, G.F., Markov, I.L., Hayes J.P.: Quantum Circuit Simulation. Springer (2009). ISBN 978-90-481-3064-1. https://doi.org/10.1007/978-90-481-3065-8
Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: Efficient quantum function representation and manipulation. IEEE Trans. on CAD of Integr. Circ. Sys. 35(1), 86–99 (2016). https://doi.org/10.1109/TCAD.2015.2459034
Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD: A decision diagram for simulation of quantum computing including stabilizer states. CoRR, abs/2108.00931, 2021. arxiv.org/abs/2108.00931
Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values? Implementing decision diagrams for quantum computing. In: David Z. Pan, editor, International Conference on CAD, pp. 1–7, 2019. https://doi.org/10.1109/ICCAD45719.2019.8942057
Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic (ISMVL’06), pp. 30–30. IEEE (2006)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information (10th Anniversary edition). Cambridge University Press (2016). ISBN 978-1-10-700217-3. www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
Jozsa, R.: Quantum algorithms and the fourier transform. Royal Society London. Series A 454(1969), 323–337 (1998)
Kueng, R., Gross, D.: Qubit stabilizer states are complex projective 3-designs. arXiv preprint arXiv:1510.02767 (2015)
Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. on CAD of Integr. Circ. and Sys. 38(5), 848–859 (2019). https://doi.org/10.1109/TCAD.2018.2834427
Somenzi, F.: CUDD: CU decision diagram package release 3.0.0. http://www.vlsi.colorado.edu/~fabio/
Van Dijk, T., Laarman, A., Van De Pol, J.: Multi-core BDD operations for symbolic reachability. Electronic Notes Theor. Comput. Sci. 296, 127–143 (2013)
Lv, G., Chen, Y., Feng, Y., Chen, Q.L., Su, K.: A succinct and efficient implementation of a \(2^{32}\) BDD package. In: Margaria, T., Qiu, Z., Yang, H., eds, International Symposium on Theoretical Aspects of Software Engineering, pp. 241–244, 2012. https://doi.org/10.1109/TASE.2012.22
Herbstritt, M.: wld: A C++ library for decision diagrams. http://www.ira.informatik.uni-freiburg.de/software/wld/ (2004)
Knuth, D.E.: The art of computer programming: Binary decision diagrams. http://www-cs-faculty.stanford.edu/knuth/programs.html (2011)
Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: Smith, R.C., editor, Design Automation Conference, pp. 40–45, 1990. https://doi.org/10.1145/123186.123222
Hillmich, S., Markov, I.L., Wille, R.: Just like the real thing: Fast weak simulation of quantum computation. In: Design Automation Conference, pp. 1–6. IEEE (2020). https://doi.org/10.1109/DAC18072.2020.9218555
Wille, R., Hillmich, S., Burgholzer, L.: JKQ: JKU tools for quantum computing. In Int’l Conference on CAD, pp. 154:1–154:5 (2020). https://doi.org/10.1145/3400302.3415746
Acknowledgment
This work received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101001318) and was part of the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vinkhuijzen, L., Grurl, T., Hillmich, S., Brand, S., Wille, R., Laarman, A. (2023). Efficient Implementation of LIMDDs for Quantum Circuit Simulation. In: Caltais, G., Schilling, C. (eds) Model Checking Software. SPIN 2023. Lecture Notes in Computer Science, vol 13872. Springer, Cham. https://doi.org/10.1007/978-3-031-32157-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-32157-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32156-6
Online ISBN: 978-3-031-32157-3
eBook Packages: Computer ScienceComputer Science (R0)