Skip to main content

The Emergence of a Giant Component in One-Dimensional Inhomogeneous Networks with Long-Range Effects

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2023)

Abstract

We study the weight-dependent random connection model, a class of sparse graphs featuring many real-world properties such as heavy-tailed degree distributions and clustering. We introduce a coefficient, \(\delta _\text {eff} \), measuring the effect of the degree-distribution on the occurrence of long edges. We identify a sharp phase transition in \(\delta _\text {eff} \) for the existence of a giant component in dimension \(d=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one-dimensional \(1/|x- y|^2\) percolation models. Comm. Math. Phys. 107(4), 611–647 (1986). http://projecteuclid.org/euclid.cmp/1104116233

  2. Bode, M., Fountoulakis, N., Müller, T.: On the largest component of a hyperbolic model of complex networks. Electron. J. Combin. 22(3), Paper 3.24, 46 (2015). https://doi.org/10.37236/4958

  3. Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous random graphs in linear time. In: 25th European Symposium on Algorithms, LIPIcs. Leibniz International Proceedings in Informatics, vol. 87, pp. Art. No. 20, 15. Schloss Dagstuhl. Leibniz-Zent. Inform. Wadern (2017)

    Google Scholar 

  4. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs. Theoret. Comput. Sci. 760, 35–54 (2019). https://doi.org/10.1016/j.tcs.2018.08.014

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, F., Lu, L.: Complex graphs and networks, CBMS Regional Conference Series in Mathematics, vol. 107. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/cbms/107

  6. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 817–838 (2013). https://doi.org/10.1214/12-AIHP480

    Article  MathSciNet  MATH  Google Scholar 

  7. Deprez, P., Wüthrich, M.V.: Scale-free percolation in continuum space. Commun. Math. Stat. 7(3), 269–308 (2018). https://doi.org/10.1007/s40304-018-0142-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Dorogovtsev, S.N.: Lectures on Complex Networks. Oxford Master Series in Physics, vol. 20. Oxford University Press, Oxford (2010). https://doi.org/10.1093/acprof:oso/9780199548927.001.0001. Oxford Master Series in Statistical Computational, and Theoretical Physics

  9. Duminil-Copin, H., Garban, C., Tassion, V.: Long-range models in 1D revisited (2020)

    Google Scholar 

  10. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971). http://projecteuclid.org/euclid.cmp/1103857443

  11. Gilbert, E.N.: Random plane networks. J. Soc. Indust. Appl. Math. 9, 533–543 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gouéré, J.B.: Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36(4), 1209–1220 (2008). https://doi.org/10.1214/07-AOP352

  13. Gracar, P., Grauer, A., Lüchtrath, L., Mörters, P.: The age-dependent random connection model. Queueing Syst. 93(3-4), 309–331 (2019). https://doi.org/10.1007/s11134-019-09625-y

  14. Gracar, P., Grauer, A., Mörters, P.: Chemical distance in geometric random graphs with long edges and scale-free degree distribution. Comm. Math. Phys. 395(2), 859–906 (2022). https://doi.org/10.1007/s00220-022-04445-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Gracar, P., Heydenreich, M., Mönch, C., Mörters, P.: Recurrence versus transience for weight-dependent random connection models. Electron. J. Probab. 27, 1–31 (2022). https://doi.org/10.1214/22-EJP748

  16. Gracar, P., Lüchtrath, L., Mörters, P.: Percolation phase transition in weight-dependent random connection models. Adv. Appl. Probab. 53(4), 1090–1114 (2021). https://doi.org/10.1017/apr.2021.13

  17. Gracar, P., Lüchtrath, L., Mönch, C.: Finiteness of the percolation threshold for inhomogeneous long-range models in one dimension (2022). https://doi.org/10.48550/ARXIV.2203.11966. https://arxiv.org/abs/2203.11966

  18. Hall, P.: On continuum percolation. Ann. Probab. 13(4), 1250–1266 (1985). http://links.jstor.org/sici?sici=0091-1798(198511)13:4<1250:OCP>2.0.CO;2-U &origin=MSN

  19. Heydenreich, M., van der Hofstad, R., Last, G., Matzke, K.: Lace expansion and mean-field behavior for the random connection model (2020)

    Google Scholar 

  20. Hirsch, C.: From heavy-tailed Boolean models to scale-free Gilbert graphs. Braz. J. Probab. Stat. 31(1), 111–143 (2017). https://doi.org/10.1214/15-BJPS305

  21. van der Hofstad, R.: The giant in random graphs is almost local (2021). https://doi.org/10.48550/ARXIV.2103.11733. https://arxiv.org/abs/2103.11733

  22. van der Hofstad, R., van der Hoorn, P., Maitra, N.: Local limits of spatial inhomogeneous random graphs (2021). https://doi.org/10.48550/ARXIV.2107.08733. https://arxiv.org/abs/2107.08733

  23. van der Hofstad, R., van der Hoorn, P., Maitra, N.: Scaling of the clustering function in spatial inhomogeneous random graphs (2022). https://doi.org/10.48550/ARXIV.2212.12885. https://arxiv.org/abs/2212.12885

  24. Jahnel, B., Lüchtrath, L.: Existence of subcritical percolation phases for generalised weight-dependent random connection models (2023). https://doi.org/10.48550/ARXIV.2302.05396. https://arxiv.org/abs/2302.05396

  25. Komjáthy, J., Lapinskas, J., Lengler, J.: Penalising transmission to hubs in scale-free spatial random graphs. Ann. Inst. Henri Poincaré Probab. Stat. 57(4), 1968–2016 (2021). https://doi.org/10.1214/21-AIHP1149

  26. Komjáthy, J., Lodewijks, B.: Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs. Stoch. Process. Appl. 130(3), 1309–1367 (2020). https://doi.org/10.1016/j.spa.2019.04.014. https://www.sciencedirect.com/science/article/pii/S0304414918301601

  27. Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316104477

  28. Lüchtrath, L.: Percolation in weight-dependent random connection models. Ph.D. thesis, Universität zu Köln (2022). https://kups.ub.uni-koeln.de/64064/

  29. Meester, R., Penrose, M.D., Sarkar, A.: The random connection model in high dimensions. Stat. Probab. Lett. 35(2), 145–153 (1997). https://doi.org/10.1016/S0167-7152(97)00008-4. https://www.sciencedirect.com/science/article/pii/S0167715297000084

  30. Newman, C.M., Schulman, L.S.: One-dimensional \(1/|j-i|^s\) percolation models: the existence of a transition for \(s\le 2\). Comm. Math. Phys. 104(4), 547–571 (1986). http://projecteuclid.org/euclid.cmp/1104115167

  31. Penrose, M.D.: Connectivity of soft random geometric graphs. Ann. Appl. Probab. 26(2), 986–1028 (2016). https://doi.org/10.1214/15-AAP1110

  32. Schulman, L.S.: Long range percolation in one dimension. J. Phys. A 16(17), L639–L641 (1983). http://stacks.iop.org/0305-4470/16/639

  33. Yukich, J.E.: Ultra-small scale-free geometric networks. J. Appl. Probab. 43(3), 665–677 (2006). https://doi.org/10.1239/jap/1158784937

Download references

Acknowledgement

We gratefully received support by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - grant no. 443916008 (SPP 2265) and by the Leibniz Association within the Leibniz Junior Research Group on Probabilistic Methods for Dynamic Communication Networks as part of the Leibniz Competition. We would also like to thank Arne Grauer who provided us the R-code we used for Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Lüchtrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gracar, P., Lüchtrath, L., Mönch, C. (2023). The Emergence of a Giant Component in One-Dimensional Inhomogeneous Networks with Long-Range Effects. In: Dewar, M., Prałat, P., Szufel, P., Théberge, F., Wrzosek, M. (eds) Algorithms and Models for the Web Graph. WAW 2023. Lecture Notes in Computer Science, vol 13894. Springer, Cham. https://doi.org/10.1007/978-3-031-32296-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32296-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32295-2

  • Online ISBN: 978-3-031-32296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics