Abstract
In this paper, we make a significant step toward designing a scalable community detection algorithm using hypergraph modularity function. The main obstacle with adjusting the initial stage of the classical Louvain algorithm is dealt via carefully adjusted linear combination of the graph modularity function of the corresponding two-section graph and the desired hypergraph modularity function. It remains to properly tune the algorithm and design a mechanism to adjust the weights in the modularity function (in an unsupervised way), depending on how often nodes in one community share hyperedges with nodes from other communities. It will be done in the journal version of this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, K., Lee, K., Suh, C.: Hypergraph spectral clustering in the weighted stochastic block model. IEEE J. Sel. Top. Signal Process. 12(5), 959–974 (2018)
Battiston, F., et al.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)
Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. 115(48), E11221–E11230 (2018)
Benson, A.R., Gleich, D.F., Higham, D.J.: Higher-order network analysis takes off, fueled by classical ideas and new data. arXiv preprint arXiv:2103.05031 (2021)
Benson, A.R., Gleich, D.F., Leskovec, J.: Tensor spectral clustering for partitioning higher-order network structures. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 118–126. SIAM (2015)
Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Chien, I., Lin, C.Y., Wang, I.H.: Community detection in hypergraphs: optimal statistical limit and efficient algorithms. In: International Conference on Artificial Intelligence and Statistics, pp. 871–879. PMLR (2018)
Chodrow, P.S., Veldt, N., Benson, A.R.: Generative hypergraph clustering: from blockmodels to modularity. Sci. Adv. 7(28), eabh1303 (2021)
Chung Graham, F., Lu, L.: Complex graphs and networks. No. 107, American Mathematical Society (2006)
Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)
Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)
Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2010)
Juul, J.L., Benson, A.R., Kleinberg, J.: Hypergraph patterns and collaboration structure. arXiv preprint arXiv:2210.02163 (2022)
Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the abcd random graph model with community structure. preprint arXiv:2203.01480 (2022)
Kamiński, B., Poulin, V., Prałat, P., Szufel, P., Théberge, F.: Clustering via hypergraph modularity. PLoS ONE 14(11), e0224307 (2019)
Kamiński, B., Prałat, P., Théberge, F.: Community detection algorithm using hypergraph modularity. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) Complex Networks and Their Applications, pp. 152–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65347-7_13
Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Netw. Sci. 1–26 (2021)
Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks. Chapman and Hall/CRC, Boca Raton (2021)
Kamiński, B., Prałat, P., Théberge, F.: Hypergraph artificial benchmark for community detection (h-ABCD). arXiv preprint arXiv:2210.15009 (2022)
Kamiński, B., Prałat, P., Théberge, F.: Outliers in the ABCD random graph model with community structure (ABCD+O). In: Proceedings of the 11th International Conference on Complex Networks and their Applications (2022, in press)
Kamiński, B., Olczak, T., Pankratz, B., Prałat, P., Théberge, F.: Properties and performance of the ABCDE random graph model with community structure. Big Data Res. 30, 100348 (2022)
Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H., Parthasarathy, S., Ravindran, B.: Hypergraph clustering by iteratively reweighted modularity maximization. Appl. Netw. Sci. 5(1), 1–22 (2020)
Kumar, T., Vaidyanathan, S., Ananthapadmanabhan, H., Parthasarathy, S., Ravindran, B.: A new measure of modularity in hypergraphs: theoretical insights and implications for effective clustering. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 286–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_24
Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)
Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)
Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
Lee, G., Choe, M., Shin, K.: How do hyperedges overlap in real-world hypergraphs?-patterns, measures, and generators. In: Proceedings of the Web Conference 2021, pp. 3396–3407 (2021)
Newman, M.: Networks. Oxford University Press, Oxford (2018)
Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)
Yin, H., Benson, A.R., Leskovec, J.: Higher-order clustering in networks. Phys. Rev. E 97(5), 052306 (2018)
Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clustering. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 555–564 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kamiński, B., Misiorek, P., Prałat, P., Théberge, F. (2023). Modularity Based Community Detection in Hypergraphs. In: Dewar, M., Prałat, P., Szufel, P., Théberge, F., Wrzosek, M. (eds) Algorithms and Models for the Web Graph. WAW 2023. Lecture Notes in Computer Science, vol 13894. Springer, Cham. https://doi.org/10.1007/978-3-031-32296-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-32296-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32295-2
Online ISBN: 978-3-031-32296-9
eBook Packages: Computer ScienceComputer Science (R0)