Skip to main content

Analysis of Effective Properties of Poroelastic Composites with Surface Effects Depending on Boundary Conditions in Homogenization Problems

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2022)

Abstract

The paper considers the homogenization problems for two-component poroelastic composites with a random structure of nanosized inclusions. The nanoscale nature of the inclusions was taken into account according to the generalized Gurtin–Murdoch theory by specifying surface elastic and porous stresses at the interface boundaries, the scale factor of which was related to the size of the inclusions. The formulation of homogenization problems was based on the theory of effective moduli, considering Hill’s energy relations. The problems of static poroelasticity were solved in accordance with the Biot and filtration models. A feature of this investigation was the comparison of solutions of four types of homogenization problems with different boundary conditions. Modeling of representative volumes and solving problems of determining the effective material moduli were carried out in the ANSYS finite element package. Representative volumes were built in the form of a cubic grid of hexahedral finite elements with poroelastic properties of materials of one of the two phases and with a random arrangement of elements of the second phase. To consider interface effects, the interfaces were covered with shell elements with options for membrane stresses. The results of computational experiments made it possible to study the effective moduli depending on the boundary conditions, on the percentage of inclusions, their characteristic nanosizes, and areas of interface boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berryman, J.G.: Effective medium theories for multicomponent poroelastic composites. J. Eng. Mech. 132, 519–531 (2006). https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(519)

    Article  Google Scholar 

  2. Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44(3–4), 941–955 (2007). https://doi.org/10.1016/j.ijsolstr.2006.05.030

    Article  MATH  Google Scholar 

  3. Duan, H.L., Karihaloo, B.L.: Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections. J. Mech. Phys. Solids 55(5), 1036–1052 (2007). https://doi.org/10.1016/j.jmps.2006.10.006

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009). https://doi.org/10.1016/S0065-2156(08)00001-X

    Article  Google Scholar 

  5. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016). https://doi.org/10.1007/s00707-015-1427-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Firooz, S., Steinmann, P., Javili, A.: Homogenization of composites with extended general interfaces: comprehensive review and unified modeling. Appl. Mech. Rev. 73(4), 040802 (2021). https://doi.org/10.1115/1.4051481

    Article  Google Scholar 

  7. Giraud, A., Huynh, Q.V., Hoxha, D., Kondo, D.: Effective poroelastic properties of transversely iso-tropic rock-like composites with arbitrarily oriented ellipsoidal inclusions. Mech. Mater. 39(11), 1006–1024 (2007). https://doi.org/10.1016/j.mechmat.2007.05.005

    Article  Google Scholar 

  8. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface and curve structures at the nanoscale. A unifying review. Appl. Mech. Rev. 65(1), 010802 (2013). https://doi.org/10.1115/1.4023012

    Article  Google Scholar 

  9. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018). https://doi.org/10.18720/MPM.3712018_3

  10. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018). https://doi.org/10.18720/MPM.3712018_4

  11. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization of piezocomposites with isolated inclusions using improved 3–0 algorithm for generating representative volumes in ACELAN-COMPOS package. Mater. Phys. Mech. 44(3), 392–403 (2020). https://doi.org/10.18720/MPM.4432020_10

  12. Kushch, V.I., Sevostianov, I., Chernobai, V.S.: Effective conductivity of composite with imperfect contact between elliptic fibers and matrix: Maxwell’s homogenization scheme. Int. J. Eng. Sci. 83, 146–161 (2014). https://doi.org/10.1016/j.ijengsci.2014.03.006

    Article  MathSciNet  MATH  Google Scholar 

  13. Le Quang, H., He, Q.-C.: Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch. Appl. Mech. 79, 225–248 (2009). https://doi.org/10.1007/s00419-008-0223-8

    Article  MATH  Google Scholar 

  14. Le Quang, H., Pham, D.S., Bonnet, G., He, Q.-C.: Estimations of the effective conductivity of anisotropic multiphase composites with imperfect interfaces. Int. J. Heat Mass Transfer. 58, 175–187 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.028

    Article  Google Scholar 

  15. Levin, V.M., Alvarez-Tostado, J.M.: On the effective constants of inhomogeneous poroelastic medium. Sci. Eng. Compos. Mater. 11(1), 35–46 (2004). https://doi.org/10.1515/SECM.2004.11.1.35

    Article  MATH  Google Scholar 

  16. Levin, V., Kanaun, S., Markov, M.: Generalized Maxwell’s scheme for homogenization of poroelastic composites. Int. J. Eng. Sci. 61, 75–86 (2012). https://doi.org/10.1016/j.ijengsci.2012.06.011

    Article  MathSciNet  MATH  Google Scholar 

  17. Milton, G.W.: Mechanics of Composites. Cambridge University Press (2002). https://doi.org/10.1017/CBO9780511613357

  18. Nasedkin, A., Nasedkina, A., Rajagopal, A.: Homogenization of dispersion-strengthened thermoelastic composites with imperfect interfaces by using finite element technique. In: Parinov, I.A., Chang, S.-H., Kim, Y.-H. (eds.) Advanced Materials. SPP, vol. 224, pp. 399–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19894-7_30

  19. Nasedkin, A., Nassar, M.E.: About anomalous properties of porous piezoceramic materials with metalized or rigid surfaces of pores. Mech. Mat. 162, 104040 (2021). https://doi.org/10.1016/j.mechmat.2021.104040

    Article  Google Scholar 

  20. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and superconductors: Properties and applications, pp. 231–254. Nova Science Publishers, NY (2011)

    Google Scholar 

  21. Nasedkina, A.A., Nasedkin, A.V., Iovane, G.: A model for hydrodynamic influence on a multi-layer deformable coal seam. Comput. Mech. 41(3), 379–389 (2008). https://doi.org/10.1007/s00466-007-0194-6

    Article  MATH  Google Scholar 

  22. Norris, A.: On the correspondence between poroelasticity and thermoelasticity. J. Appl. Phys. 71(3), 1138–1141 (1992). https://doi.org/10.1063/1.351278

    Article  Google Scholar 

  23. Ren, S.-C., Liu, J.-T., Gu, S.-T., He, Q.-C.: An XFEM-based numerical procedure for the analysis of poroelastic composites with coherent imperfect interface. Comput. Mater. Sci. 94, 173–181 (2014). https://doi.org/10.1016/j.commatsci.2014.03.047

    Article  Google Scholar 

  24. Tuncer, E.: Dielectric mixtures-importance and theoretical approaches. IEEE Electr. Insul. Mag. 29(6), 49–58 (2013). https://doi.org/10.1109/MEI.2013.6648753

    Article  Google Scholar 

  25. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011). https://doi.org/10.1016/S0894-9166(11)60009-8

    Article  Google Scholar 

  26. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta. Mech. Sin. 32(1), 83–100 (2016). https://doi.org/10.1007/s10409-015-0508-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Zimmerman, R.W.: Coupling in poroelasticity and thermoelasticity. Int. J. Rock Mech. Min. Sci. 37(1–2), 79–87 (2000). https://doi.org/10.1016/S1365-1609(99)00094-5

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Russian Foundation for Basic Research according to the research project No 19-58-18011 Bulg_a (M.C., A.N., A.N.), the National Science Fund of Bulgaria (project KP-06-Russia-1/27.09.2019) and by the Science and Education for Smart Growth Operational Program (2014-2020) and the ESIF through grant BG05M2OP001-1.001-0003 (M.D.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Datcheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chebakov, M., Datcheva, M., Nasedkin, A., Nasedkina, A., Iankov, R. (2023). Analysis of Effective Properties of Poroelastic Composites with Surface Effects Depending on Boundary Conditions in Homogenization Problems. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32412-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32411-6

  • Online ISBN: 978-3-031-32412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics