Skip to main content

A Theoretical Analysis on the Bound Violation Probability in Differential Evolution Algorithm

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13858))

Included in the following conference series:

  • 459 Accesses

Abstract

This study is focused on Differential Evolution (DE) algorithm in the context of solving continuous bound-constrained optimization problems. The mutation operator involved in DE might lead to infeasible elements, i.e. one or all of their components exceed the lower or upper bound. The infeasible components become the subject of a correction method, that deflects the algorithm from its canonical behavior. The repairing strategy considered in this work is a stochastic variant of the projection to bounds strategy, known as “exponentially confined”. The main aim of this study is to determine the analytical expression of the bound violation probability of components generated by mutation operator in conjunction with “exponentially confined”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/madalinami/NMA22.

  2. 2.

    https://github.com/madalinami/NMA22.

References

  1. Ali, M.M., Fatti, L.P.: A differential free point generation scheme in the differential evolution algorithm. J. Global Optim. 35(4), 551–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arabas, J., Szczepankiewicz, A., Wroniak, T.: Experimental comparison of methods to handle boundary constraints in differential evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 411–420. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15871-1_42

    Chapter  Google Scholar 

  3. Gandomi, A.H., Kashani, A.R., Zeighami, F.: Retaining wall optimization using interior search algorithm with different bound constraint handling. Int. J. Numer. Anal. Meth. Geomech. 41, 1304–1331 (2017)

    Article  Google Scholar 

  4. Helwig, S., Wanka, R.: Particle swarm optimization in high-dimensional bounded search spaces. In: IEEE Swarm Intelligence Symposium, pp. 198–205 (2007)

    Google Scholar 

  5. Kashani, A.R., Chiong, R., Dhakal, S., Gandomi, A.H.: Investigating bound handling schemes and parameter settings for the interior search algorithm to solve truss problems. In: Engineering Reports, 3(10), p. e12405 (2021)

    Google Scholar 

  6. Kreischer, V., Magalhaes, T.T., Barbosa, H.J., Krempser, E.: Evaluation of bound constraints handling methods in differential evolution using the cec2017 benchmark. In: XIII Brazilian Congress on Computational Intelligence (2017)

    Google Scholar 

  7. van Stein, B., Caraffini, F., Kononova, A.V.: Emergence of structural bias in differential evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1234–1242 (2021)

    Google Scholar 

  8. Kononova, A.V., Caraffini, F., Bäck, T.: Differential evolution outside the box. Inf. Sci. 581, 587–604 (2021)

    Article  Google Scholar 

  9. Padhye, N., Mittal, P., Deb, K.: Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput. Optim. Appl. 62(3), 851–890 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zaharie, D., Micota, F.: Revisiting the analysis of population variance in Differential Evolution algorithms. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1811–1818 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina-Andreea Mitran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitran, MA. (2023). A Theoretical Analysis on the Bound Violation Probability in Differential Evolution Algorithm. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32412-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32411-6

  • Online ISBN: 978-3-031-32412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics