Skip to main content

Parameter Estimation Inspired by Temperature Measurements for a Chemotactic Model of Honeybee Thermoregulation

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13858))

Included in the following conference series:

Abstract

The key for the survival of honeybees in winter is in the generation and preservation of heat. A successful study of this process is the modeling based on generalized Keller-Segel model, proposed by R.Bastaansen et al., 2020. The problem is in the form of coupled system of two parabolic equations for the temperature and bee density. The model parameters control the particular population dynamics in the hive. Our goal is to predict the optimal parameters based only on measurements of the temperature with three sensors. We perform the study on two stages. First, we solve an unknown reaction coefficient problem to determine the temperature and density. Then, we solve the next inverse problem for estimation of the parameters in the other parabolic equation, using as measured data the density, obtained by the first inverse problem. Results from numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alifanov, O.M., Artioukhine, E.A., Rumyantsev, S.V.: Extreme Methods for Solving Ill-posed problems with Applications to Inverse Heat Transfer Problems, Begell House, New York - Wallingford (U.K.) (1995)

    Google Scholar 

  2. Atanasov, A.Z., Koleva, M.N., Vulkov, L.G.: Numerical optimization identification of a Keller-Segel model for thermoregulation in honey bee colonies in winter, accepted in Springer book series CCIS (2023)

    Google Scholar 

  3. Atanasov, A.Z., Koleva, M.N., Vulkov, L.G.: Numerical analysis of thermoregulation in honey bee colonies in winter based on sign-changing chemotactic coefficient model, accepted in Springer Proceedings in Mathematics & Statistics (2023)

    Google Scholar 

  4. Bastaansen, R., Doelman, A., van Langevede, F., Rottschafer, V.: Modeling honey bee colonies in winter using a Keller-Segel model with a sign-changing chemotactic coefficient. SIAM J. Appl. Math. 80(20), 839–863 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chavent, G.: Nonlinear Least Squares for Inverse Problems: Theoretical Foundation and Step-by Guide for Applications. Springer (2009). https://doi.org/10.1007/978-90-481-2785-6

  6. Cui, M., Yang, K., Xu, X., Wang, S., Gao, X.: A modified Levenberg-Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems. Int. J. Heat Mass Transf. 97, 908–916 (2016)

    Article  Google Scholar 

  7. Fakhraie, M., Shidfar, A., Garshasbi, M.: A computational procedure for estimation of an unknown coefficient in an inverse boundary value problem. Appl. Math. Comput. 187, 1120–1125 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Guzman-Novoa, E., Eccles, C.Y., McGowan, J., Kelly, P.G., Correa- Bentez, A.: Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario. Canada, Apidologie 41, 443–450 (2010)

    Article  Google Scholar 

  9. Hasanov, A., Romanov, V.: Introduction to the Inverse Problems for Differential Equations. Springer, N.Y. (2017). https://doi.org/10.1007/978-3-319-62797-7

    Book  MATH  Google Scholar 

  10. Jarimi, J., Tapia-Brito, E., Riffat, S.: A review on thermoregulation techniques in honey bees (Apis Mellifera) beehive microclimate and its similarities to the heating and cooling management in buildings. Future Cities Environ. 6(1), 7, 1–8 (2020)

    Google Scholar 

  11. Kwak, Y., Hwang, J., Yoo, C.: A new damping strategy of Levenberg-Marquardt algorithm for multilayer perceptrons. Neural Network World 21(4), 327–340 (2011)

    Article  Google Scholar 

  12. Lemke, M., Lamprecht, A.: A model of heat production and thermoregulation in winter clusters of honey bee using differential heat conduction equations. J. Theor. Biol. 142(2), 261–0273 (1990)

    Article  Google Scholar 

  13. Levenberg, K.: A method for the solution of certain non-linear problems in LeastSquares. Quarterly Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lesnic, D.: Inverse Problems with Applications in Science and Engineering. CRC Press, London (2020)

    MATH  Google Scholar 

  15. Ratti, V., Kevan, P.G., Eberl, H.J.: A mathematical model of forager loss in honeybee colonies infested with varroa destructor and the acute bee paralysis virus. Bul. Math. Biol. 79, 1218–1253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marquardt, D.: An algorithm for least-squares estimation of non- linear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MATH  Google Scholar 

  17. Samarskii A.A.: The Theory of Difference Schemes. Marcel Dekker Inc. (2001)

    Google Scholar 

  18. Stabentheiner, A., Kovac, H., Brodschneider, R.: Honeybee colony thermoregulation regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE 5(1), e8967 (2010)

    Article  Google Scholar 

  19. Tautz, J.: The Buzz About Bees: Biology of a Superorganism. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78729-7

  20. Watmough, J., Camazine, S.: Self-organized thermoregulation of honeybee clusters. J. Theor. Biol. 176(3), 391–402 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Bulgarian National Science Fund under the Project KP-06-PN 46-7 Design and research of fundamental technologies and methods for precision apiculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Z. Atanasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atanasov, A.Z., Koleva, M.N., Vulkov, L.G. (2023). Parameter Estimation Inspired by Temperature Measurements for a Chemotactic Model of Honeybee Thermoregulation. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32412-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32411-6

  • Online ISBN: 978-3-031-32412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics