Skip to main content

A Survey of Multipath Transport Mechanism in Data Center Networks

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2022)

Abstract

With the profound revolution in the data center industry and the increasing size of data center networks (DCNs), researchers have been focusing on achieving efficient and fast transport of traffic within the data center. In addition, the number of devices equipped with multiple interfaces is increasing, which allows multiple paths to be used simultaneously. Multipath transmission mechanisms can significantly improve the performance of data transmission in DCNs. However, some issues remain when MPTCP is deployed in DCNs. We have investigated multipath transport mechanisms in data center networks. First, the Multipath TCP (MPTCP) protocol is briefly described. Then, a study of routing algorithms, congestion control, and energy-saving techniques for applying MPTCP in DCNs are summarized separately. Finally, we propose the future direction of the multipath transmission mechanism in DCNs.

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61962026, and by the Postgraduate Innovation Fund of Jiangxi Provincial Department of Education under Grant YC2021-S258.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, T., Lei, Y., Zhang, Q., Zou, S., Huang, J., Li, F.: Fine-grained load balancing with traffic-aware rerouting in datacenter networks. J. Cloud Comput. 10(37), 1–20 (2021)

    Google Scholar 

  2. Xu, C., Wang, K., Sun, Y., Guo, S., Zomaya, A.Y.: Redundancy avoidance for big data in data centers: a conventional neural network approach. IEEE Trans. Netw. Sci. Eng. 7(1), 104–114 (2020)

    Article  MathSciNet  Google Scholar 

  3. Huang, J., Li, S., Han, R., Wang, J.: Receiver-driven fair congestion control for TCP outcast in data center networks. J. Netw. Comput. Appl. 131, 75–88 (2019)

    Article  Google Scholar 

  4. Cao, Y., Ji, R., Ji, L., Lei, G., Wang, H., Shao, X.: \(l^2\)-MPTCP: a learning-driven latency-aware multipath transport scheme for industrial internet applications. IEEE Trans. Industr. Inf. (2022). https://doi.org/10.1109/TII.2022.3151093

    Article  Google Scholar 

  5. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824, IETF (2013)

    Google Scholar 

  6. Kheirkhah, M., Wakeman, I., Parisis, G.: Multipath transport and packet spraying for efficient data delivery in data centers. Comput. Netw. 162, 1–15 (2019)

    Article  Google Scholar 

  7. Kheirkhah, M., Lee, M.: A solution to MPTCP’s inefficiencies under the incast problem for data center networks. Comput. Commun. 161, 238–247 (2020)

    Article  Google Scholar 

  8. Dong, E., Fu, X., Xu, M., Yang, Y.: DCMPTCP: host-based load balancing for datacenters. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 622–633. IEEE, Piscataway (2018)

    Google Scholar 

  9. Duan, J., Wang, Z., Wu, C.: Responsive multipath TCP in SDN-based datacenters. In: 2015 IEEE International Conference on Communications (ICC), pp. 5296–5301. IEEE, Piscataway (2015)

    Google Scholar 

  10. Mahmud, I., Lubna, T., Song, Y.-J., Cho, Y.-Z.: Coupled multipath BBR (C-MPBBR): a efficient congestion control algorithm for multipath TCP. IEEE Access 8, 165497–165511 (2020)

    Article  Google Scholar 

  11. Cao, Y., Ji, R., Huang, X., et al.: Empirical mode decomposition-empowered network traffic anomaly detection for secure multipath TCP communications. Mob. Netw. Appl. 27, 1–10 (2022)

    Article  Google Scholar 

  12. Li, M., Lukyanenko, A., Tarkoma, S., Ylä-Jääski, A.: MPTCP incast in data center networks. China Commun. 11(4), 25–37 (2014)

    Article  Google Scholar 

  13. Heller, B., Seetharaman, S., Mahadevan, P., et al.: ElasticTree: saving energy in data center networks. In: the 2010 USENIX Conference on Networked Systems Design & Implementation, pp. 249–264. USENIX Association, USA (2010)

    Google Scholar 

  14. Bhattacharya, T., Qin, X.: Modeling energy efficiency of future green data centers. In: 2020 11th International Green and Sustainable Computing Workshops (IGSC), pp. 1–3 (2020)

    Google Scholar 

  15. Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural guidelines for multipath TCP development. RFC 6182 (2011)

    Google Scholar 

  16. Chung, J., Han, D., Kim J., Kim, C.: Machine learning based path management for mobile devices over MPTCP. In: 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 206–209. IEEE, Piscataway (2017)

    Google Scholar 

  17. Hwang, J., Yoo, J.: Packet scheduling for multipath TCP. In: 2015 Seventh International Conference on Ubiquitous and Future Networks, pp. 177–179. IEEE, Piscataway (2015)

    Google Scholar 

  18. Wei, W., Xue, K., Han, J., Wei, D., Hong, P.: Shared Bottleneck-based congestion control and packet scheduling for multipath TCP. IEEE/ACM Trans. Network. 28(2), 653–666 (2020)

    Article  Google Scholar 

  19. Nguyen, V.D., Ro, S.: Performance evaluation of MPTCP over shared bottleneck link. J. Korean Inst. Commun. Inf. Sci. 40(1), 70–77 (2015)

    Google Scholar 

  20. Chen, K., Singla, A., Singh, A., et al.: OSA: an optical switching architecture for data center networks with unprecedented flexibility. In: the USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 498–511. IEEE, Piscataway (2014)

    Google Scholar 

  21. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

    Article  Google Scholar 

  22. Greenberg, A., Hamilton, J.R., Jain, N., et al.: VL2: a scalable and flexible data center network. In: the Special Interest Group on Data Communication (SIGCOMM), pp. 51–62. Association for Computing Machinery, New York, NY, USA (2009)

    Google Scholar 

  23. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: DCell: a scalable and fault-tolerant network structure for data centers. In: the ACM SIGCOMM 2008 Conference on Data Communication (SIGCOMM 2008), pp. 75–86. Association for Computing Machinery, New York, NY, USA (2008)

    Google Scholar 

  24. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 267–280. Association for Computing Machinery, New York, NY, USA (2010)

    Google Scholar 

  25. Hopps, C.: Analysis of an equal-cost multi-path algorithm, RFC2992 (2000). https://doi.org/10.17487/RFC2992. Accessed 01 Nov 2000

  26. He, K., Rozner, E., Agarwal, K., Felter, W., Carter, J., Akella, A.: Presto: edge-based load balancing for fast datacenter networks. In: the Conference on Special Interest Group on Data Communication SIGCOMM 2015. Association for Computing Machinery, New York, NY, USA (2015)

    Google Scholar 

  27. Hu, J., Huang, J., Lv, W., Zhou, Y., Wang, J., He, T.: CAPS: coding-based adaptive packet spraying to reduce flow completion time in data center. IEEE/ACM Trans. Network. 27(6), 2338–2353 (2019)

    Article  Google Scholar 

  28. Zhang, H., Zhang, J., Bai, W., Chen, K., Chowdhury, M.: Resilient datacenter load balancing in the wild. In: The Conference of the ACM Special Interest Group on Data Communication SIGCOMM’ 17. Association for Computing Machinery, pp. 253–266. NY, USA, New York (2017)

    Google Scholar 

  29. Yu, L., Deng, P.: Open flow based load balancing for fat-tree networks with multipath support. In: IEEE International Conference on Communications (ICC). IEEE, Piscataway (2013)

    Google Scholar 

  30. He, K., Rozner, E., Agarwal, K., Felter, W., Carter, J., Akella, A.: Presto: edge-based load balancing for fast datacenter networks. In: the Conference on Special Interest Group on Data Communication SIGCOMM’ 15, pp. 75–86. Association for Computing Machinery, New York, NY, USA (2015)

    Google Scholar 

  31. Sandri, M., Silva, A., Rocha, L.A., Verdi, F.L.: On the benefits of using multipath TCP and openflow in shared bottlenecks. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 9–16. IEEE, Piscataway (2015)

    Google Scholar 

  32. Raiciu, C., Barre, S., Pluntke, C., et al.: Improving datacenter performance and robustness with multipath TCP. ACM SIGCOMM Comput. Commun. Rev. 41(4), 266–277 (2011)

    Article  Google Scholar 

  33. Cao, Y., Xu, M.: Dual-NAT: dynamic multipath flow scheduling for data center networks. In: 2013 21st IEEE International Conference on Network Protocols (ICNP), pp. 1–2. IEEE, Piscataway (2013)

    Google Scholar 

  34. Cao, Y., Xu, M., Fu, X., Dong, E.: Explicit multipath congestion control for data center networks. In: the Ninth ACM Conference on Emerging Networking Experiments and Technologies - CoNEXT’ 13, pp. 73–84. Association for Computing Machinery, New York, NY, USA (2013)

    Google Scholar 

  35. Duan, J., Wang, Z., Wu, C.: Responsive multipath TCP in SDN-based datacenters. In: 2015 IEEE International Conference on Communications (ICC), pp. 5296–5301. IEEE, Piscataway (2015)

    Google Scholar 

  36. Hussein, A., Elhajj, I.H., Chehab, A., et al.: SDN for MPTCP: an enhanced architecture for large data transfers in datacenters. In: IEEE International Conference on Communications, pp. 1–7. IEEE, Piscataway (2017)

    Google Scholar 

  37. Zannettou, S., Sirivianos M., Papadopoulos, F.: Exploiting path diversity in datacenters using MPTCP-aware SDN. In: 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 539–546. IEEE, Piscataway (2016)

    Google Scholar 

  38. Kukreja, N., Maier, G., Alvizu R., Pattavina, A.: SDN based automated testbed for evaluating multipath TCP. In: 2016 IEEE International Conference on Communications Workshops (ICC), pp. 718–723. IEEE, Piscataway (2016)

    Google Scholar 

  39. Ye, J., Feng, L., Xie, Z., Huang, J., Li, X.: Fine-grained congestion control for MultiPath TCP in data center networks. IEEE Access 7, 31782–31790 (2019)

    Article  Google Scholar 

  40. Kimura, B., Loureiro, A.: MPTCP linux kernel congestion controls. Technical report (2018)

    Google Scholar 

  41. Pang, S., Yao, J., Wang, X., Ding, T., Zhang, L.: Transmission control of MPTCP Incast based on buffer balance factor allocation in data center networks. IEEE Access 7, 183428–183434 (2019)

    Article  Google Scholar 

  42. Guo, C., Lu, Y., Yuan, M., et al.: Fast and cautious: leveraging multi-path diversity for transport loss recovery in data centers. In: USENIX Annual Technical Conference, pp. 29–42. USENIX Association, USA (2016)

    Google Scholar 

  43. Liu, S., Huang, J., Jiang, W., Wang, J.: Reducing traffic burstiness for MPTCP in data center networks. J. Netw. Comput. Appl. 192, 1–12 (2021)

    Article  Google Scholar 

  44. Huang, J., Li, W., Li, Q., Zhang, T., Dong, P., Wang, J.: Tuning high flow concurrency for MPTCP in data center networks. J. Cloud Comput. Adv. Syst. Appl. 9(13), 1–15 (2020)

    Google Scholar 

  45. Zhao, J., Liu, J., Wang, H., Xu, C., Gong, W., Xu, C.: Measurement, analysis, and enhancement of multipath TCP energy efficiency for datacenters. IEEE/ACM Trans. Network. 28(1), 57–70 (2020)

    Article  Google Scholar 

  46. Khalili, R., Gast, N., Popovic, M., Upadhyay, U., Boudec, J.: MPTCP is not Pareto-optimal: performance issues and a possible solution. In: the 8th International Conference on Emerging Networking Experiments and Technologies (CoNEXT 2012), pp. 1–12. Association for Computing Machinery, New York, NY, USA (2012)

    Google Scholar 

  47. Ferlin, S., Alay, Ö., Dreibholz, T., Hayes, D.A., Welzl, M.: Revisiting congestion control for multipath TCP with shared bottleneck detection. In: the 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE, Piscataway (2016)

    Google Scholar 

  48. Gupta, M., Singh, S.: Greening of the internet. In: Conference on Applications. Technologies, Architectures, and Protocols for Computer Communications, pp. 19–26. Association for Computing Machinery, New York, NY, USA (2003)

    Google Scholar 

  49. Vasić, N., Kostić, D.: Energy-aware traffic engineering. In: the 1st International Conference on Energy-Efficient Computing and Networking (e-Energy 2010), pp. 169–178. Association for Computing Machinery, New York, NY, USA (2010)

    Google Scholar 

  50. Lin, M., Wierman, A., Andrew, L.L., Thereska, E.: Dynamic right-sizing for power-proportional data centers. IEEE/ACM Trans. Network. 21(5), 1378–1391 (2013)

    Article  Google Scholar 

  51. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and Openflow: from concept to implementation. Commun. Surv. Tutorials 16(4), 2181–2206 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwen Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, R., Ji, L., Gu, K., Wu, J., Lei, G. (2023). A Survey of Multipath Transport Mechanism in Data Center Networks. In: Cao, Y., Shao, X. (eds) Mobile Networks and Management. MONAMI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-031-32443-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32443-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32442-0

  • Online ISBN: 978-3-031-32443-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics