Skip to main content

An Extended TODIM Method for Multi-criteria Decision Making Under q-Rung Orthopair Fuzzy Environment

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2022)

Abstract

Multi-criteria fuzzy decision making theory is one of the important tools to solve modern decision making problems. Facing complex and changeable decision making problems in real life, decision makers evaluate and quantify various decisions based on expert index system. They evaluate and rank options through a series of methods to produce scientific and reasonable results. The purpose of this paper is to propose a new q-rung orthopair fuzzy number (q-ROFN) ranking method based on the analysis of the existing q-ROFN ranking methods, and apply this new proposal in the TOMID decision making method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141-B−164 (1970). https://doi.org/10.1287/mnsc.17.4.B141

    Article  MathSciNet  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atanassov, K.T.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie, J., Liu, S.: Cartesian product over interval valued intuitionistic fuzzy sets. J. Syst. Eng. Electron. 28(6), 1152–1161 (2017)

    Article  Google Scholar 

  7. Zhang, Z.H., et al.: Some average index models on interval valued intuitionistic fuzzy sets and their application to practical teaching evaluation in university. In: International Conference on Advanced Educational Technology and Information Engineering, pp. 84–91 (2015)

    Google Scholar 

  8. Büyüközkan, G., Göçer, F.: Smart medical device selection based on interval valued intuitionistic fuzzy VIKOR. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 306–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_28

    Chapter  Google Scholar 

  9. Zhang, Z., et al.: Incentive-punitive risk function with interval valued intuitionistic fuzzy information for outsourced software project risk assessment. J. Intell. Fuzzy Syst. 32(5), 3749–3760 (2017)

    Article  MATH  Google Scholar 

  10. Sennaroglu, B., Mutlu, M., Tuzkaya, G.: An interval valued intuitionistic fuzzy promethee approach for hospital service quality evaluation. In: Zeng, X., et al. (eds.) Uncertainty Modelling In Knowledge Engineering and Decision Making, vol. 10, pp. 588–594 (2016)

    Google Scholar 

  11. Garg, H., Kumar, K.: A novel possibility measure to interval-valued intuitionistic fuzzy set using connection number of set pair analysis and its applications. Neural Comput. Appl. 32(8), 3337–3348 (2019). https://doi.org/10.1007/s00521-019-04291-w

    Article  Google Scholar 

  12. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2013)

    Article  Google Scholar 

  13. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Article  Google Scholar 

  14. Gou, X., Xu, Z., Ren, P.: The properties of continuous pythagorean fuzzy information. Int. J. Intell. Syst. 31(5), 401–424 (2016)

    Article  Google Scholar 

  15. Peng, X., Yang, Y.: Some results for pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liang, D., Xu, Z.: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017)

    Article  Google Scholar 

  17. Zhang, X.: Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016)

    Article  Google Scholar 

  18. Ho, L.-H., Lin, Y.-L., Chen, T.-Y.: A Pearson-like correlation-based TOPSIS method with interval-valued Pythagorean fuzzy uncertainty and its application to multiple criteria decision analysis of stroke rehabilitation treatments. Neural Comput. Appl. 32(12), 8265–8295 (2019). https://doi.org/10.1007/s00521-019-04304-8

    Article  Google Scholar 

  19. Qiu, S., Fu, D., Deng, X.: A multicriteria selection framework for wireless communication infrastructure with interval-valued pythagorean fuzzy assessment. Wirel. Commun. Mob. Comput. 2021, 9913737 (2021)

    Article  Google Scholar 

  20. Yager, R.R.: Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)

    Article  Google Scholar 

  21. Liu, Z., Wang, X., Li, L., Zhao, X., Liu, P.: Q-rung orthopair fuzzy multiple attribute group decision-making method based on normalized bidirectional projection model and generalized knowledge-based entropy measure. J. Ambient. Intell. Humaniz. Comput. 12(2), 2715–2730 (2020). https://doi.org/10.1007/s12652-020-02433-w

    Article  Google Scholar 

  22. Pinar, A., Boran, F.E.: A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. Int. J. Mach. Learn. Cybern. 11(8), 1749–1780 (2020). https://doi.org/10.1007/s13042-020-01070-1

    Article  Google Scholar 

  23. Garg, H.: A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties. Neural Comput. Appl. 32(18), 15077–15099 (2020)

    Article  Google Scholar 

  24. Wei, G., Gao, H., Wei, Y.: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018)

    Article  Google Scholar 

  25. Liu, P., Wang, P.: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 33(2), 259–280 (2018)

    Article  Google Scholar 

  26. Peng, X., Dai, J., Garg, H.: Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 33(11), 2255–2282 (2018)

    Article  Google Scholar 

  27. Peng, X., Dai, J.: Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on multiparametric similarity measure and combinative distance-based assessment. Int. J. Intell. Syst. 34(7), 1588–1630 (2019)

    Article  Google Scholar 

  28. Mi, X., et al.: Hospitality brand management by a score-based q-rung ortho pair fuzzy VIKOR method integrated with the best worst method. Econ. Res.-Ekonomska istraživanja. 32(1), 3266–3295 (2019)

    Article  Google Scholar 

  29. Peng, X., Krishankumar, R., Ravichandran, K.S.: Generalized orthopair fuzzy weighted distance-based approximation (WDBA) algorithm in emergency decision-making. Int. J. Intell. Syst. 34(10), 2364–2402 (2019)

    Article  Google Scholar 

  30. Wang, J., et al.: A novel approach to multi-attribute group decision-making based on q-rung orthopair fuzzy power dual Muirhead mean operators and novel score function. J. Intell. Fuzzy Syst. 39(1), 561–580 (2020)

    Article  Google Scholar 

  31. Garg, H., Ali, Z., Mahmood, T.: Algorithms for complex interval-valued q-rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS. Expert Syst. 38, e12609 (2020)

    Google Scholar 

  32. Ren, P., Xu, Z., Gou, X.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016)

    Article  Google Scholar 

  33. Chen, L., Luo, N., Gou, X.: A novel q-rung orthopair fuzzy TODIM approach for multi-criteria group decision making based on Shapley value and relative entropy. J. Intell. Fuzzy Syst. 40(1), 235–250 (2021)

    Article  Google Scholar 

  34. Prakash, K., et al.: Lifetime prolongation of a wireless charging sensor network using a mobile robot via linear Diophantine fuzzy graph environment. Complex Intell. Syst. 8(3), 2419–2434 (2022). https://doi.org/10.1007/s40747-022-00653-5

    Article  Google Scholar 

  35. Garg, K., Chauhan, N., Agrawal, R.: Optimized resource allocation for fog network using neuro-fuzzy offloading approach. Arabian J. Sci. Eng. 47(8), 10333–10346 (2022). https://doi.org/10.1007/s13369-022-06563-5

    Article  Google Scholar 

  36. Liu, P., Liu, W.: Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int. J. Intell. Syst. 34(8), 1755–1794 (2019)

    Article  Google Scholar 

  37. Gomes, L.F.A.M., Lima, M.M.P.P.: TODIM: basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16(4), 113–127 (1992)

    MATH  Google Scholar 

  38. Lahdelma, R., Salminen, P.: Prospect theory and stochastic multicriteria acceptability analysis (SMAA). Omega 37(5), 961–971 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, S., Qinmin, Liu, Q., Chen, Y., Jin, Z., Deng, X. (2023). An Extended TODIM Method for Multi-criteria Decision Making Under q-Rung Orthopair Fuzzy Environment. In: Cao, Y., Shao, X. (eds) Mobile Networks and Management. MONAMI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-031-32443-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32443-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32442-0

  • Online ISBN: 978-3-031-32443-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics