Abstract
Multi-criteria fuzzy decision making theory is one of the important tools to solve modern decision making problems. Facing complex and changeable decision making problems in real life, decision makers evaluate and quantify various decisions based on expert index system. They evaluate and rank options through a series of methods to produce scientific and reasonable results. The purpose of this paper is to propose a new q-rung orthopair fuzzy number (q-ROFN) ranking method based on the analysis of the existing q-ROFN ranking methods, and apply this new proposal in the TOMID decision making method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B-141-B−164 (1970). https://doi.org/10.1287/mnsc.17.4.B141
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)
Atanassov, K.T.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)
Xie, J., Liu, S.: Cartesian product over interval valued intuitionistic fuzzy sets. J. Syst. Eng. Electron. 28(6), 1152–1161 (2017)
Zhang, Z.H., et al.: Some average index models on interval valued intuitionistic fuzzy sets and their application to practical teaching evaluation in university. In: International Conference on Advanced Educational Technology and Information Engineering, pp. 84–91 (2015)
Büyüközkan, G., Göçer, F.: Smart medical device selection based on interval valued intuitionistic fuzzy VIKOR. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 306–317. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_28
Zhang, Z., et al.: Incentive-punitive risk function with interval valued intuitionistic fuzzy information for outsourced software project risk assessment. J. Intell. Fuzzy Syst. 32(5), 3749–3760 (2017)
Sennaroglu, B., Mutlu, M., Tuzkaya, G.: An interval valued intuitionistic fuzzy promethee approach for hospital service quality evaluation. In: Zeng, X., et al. (eds.) Uncertainty Modelling In Knowledge Engineering and Decision Making, vol. 10, pp. 588–594 (2016)
Garg, H., Kumar, K.: A novel possibility measure to interval-valued intuitionistic fuzzy set using connection number of set pair analysis and its applications. Neural Comput. Appl. 32(8), 3337–3348 (2019). https://doi.org/10.1007/s00521-019-04291-w
Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2013)
Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)
Gou, X., Xu, Z., Ren, P.: The properties of continuous pythagorean fuzzy information. Int. J. Intell. Syst. 31(5), 401–424 (2016)
Peng, X., Yang, Y.: Some results for pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015)
Liang, D., Xu, Z.: The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Appl. Soft Comput. 60, 167–179 (2017)
Zhang, X.: Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016)
Ho, L.-H., Lin, Y.-L., Chen, T.-Y.: A Pearson-like correlation-based TOPSIS method with interval-valued Pythagorean fuzzy uncertainty and its application to multiple criteria decision analysis of stroke rehabilitation treatments. Neural Comput. Appl. 32(12), 8265–8295 (2019). https://doi.org/10.1007/s00521-019-04304-8
Qiu, S., Fu, D., Deng, X.: A multicriteria selection framework for wireless communication infrastructure with interval-valued pythagorean fuzzy assessment. Wirel. Commun. Mob. Comput. 2021, 9913737 (2021)
Yager, R.R.: Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)
Liu, Z., Wang, X., Li, L., Zhao, X., Liu, P.: Q-rung orthopair fuzzy multiple attribute group decision-making method based on normalized bidirectional projection model and generalized knowledge-based entropy measure. J. Ambient. Intell. Humaniz. Comput. 12(2), 2715–2730 (2020). https://doi.org/10.1007/s12652-020-02433-w
Pinar, A., Boran, F.E.: A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. Int. J. Mach. Learn. Cybern. 11(8), 1749–1780 (2020). https://doi.org/10.1007/s13042-020-01070-1
Garg, H.: A novel trigonometric operation-based q-rung orthopair fuzzy aggregation operator and its fundamental properties. Neural Comput. Appl. 32(18), 15077–15099 (2020)
Wei, G., Gao, H., Wei, Y.: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int. J. Intell. Syst. 33(7), 1426–1458 (2018)
Liu, P., Wang, P.: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 33(2), 259–280 (2018)
Peng, X., Dai, J., Garg, H.: Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function. Int. J. Intell. Syst. 33(11), 2255–2282 (2018)
Peng, X., Dai, J.: Research on the assessment of classroom teaching quality with q-rung orthopair fuzzy information based on multiparametric similarity measure and combinative distance-based assessment. Int. J. Intell. Syst. 34(7), 1588–1630 (2019)
Mi, X., et al.: Hospitality brand management by a score-based q-rung ortho pair fuzzy VIKOR method integrated with the best worst method. Econ. Res.-Ekonomska istraživanja. 32(1), 3266–3295 (2019)
Peng, X., Krishankumar, R., Ravichandran, K.S.: Generalized orthopair fuzzy weighted distance-based approximation (WDBA) algorithm in emergency decision-making. Int. J. Intell. Syst. 34(10), 2364–2402 (2019)
Wang, J., et al.: A novel approach to multi-attribute group decision-making based on q-rung orthopair fuzzy power dual Muirhead mean operators and novel score function. J. Intell. Fuzzy Syst. 39(1), 561–580 (2020)
Garg, H., Ali, Z., Mahmood, T.: Algorithms for complex interval-valued q-rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS. Expert Syst. 38, e12609 (2020)
Ren, P., Xu, Z., Gou, X.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016)
Chen, L., Luo, N., Gou, X.: A novel q-rung orthopair fuzzy TODIM approach for multi-criteria group decision making based on Shapley value and relative entropy. J. Intell. Fuzzy Syst. 40(1), 235–250 (2021)
Prakash, K., et al.: Lifetime prolongation of a wireless charging sensor network using a mobile robot via linear Diophantine fuzzy graph environment. Complex Intell. Syst. 8(3), 2419–2434 (2022). https://doi.org/10.1007/s40747-022-00653-5
Garg, K., Chauhan, N., Agrawal, R.: Optimized resource allocation for fog network using neuro-fuzzy offloading approach. Arabian J. Sci. Eng. 47(8), 10333–10346 (2022). https://doi.org/10.1007/s13369-022-06563-5
Liu, P., Liu, W.: Multiple-attribute group decision-making method of linguistic q-rung orthopair fuzzy power Muirhead mean operators based on entropy weight. Int. J. Intell. Syst. 34(8), 1755–1794 (2019)
Gomes, L.F.A.M., Lima, M.M.P.P.: TODIM: basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16(4), 113–127 (1992)
Lahdelma, R., Salminen, P.: Prospect theory and stochastic multicriteria acceptability analysis (SMAA). Omega 37(5), 961–971 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Qiu, S., Qinmin, Liu, Q., Chen, Y., Jin, Z., Deng, X. (2023). An Extended TODIM Method for Multi-criteria Decision Making Under q-Rung Orthopair Fuzzy Environment. In: Cao, Y., Shao, X. (eds) Mobile Networks and Management. MONAMI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-031-32443-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-32443-7_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32442-0
Online ISBN: 978-3-031-32443-7
eBook Packages: Computer ScienceComputer Science (R0)