Skip to main content

Surface Defect Detection Algorithm of Aluminum Sheet Based on Improved Yolov3

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2022)

Abstract

The surface defect detection of aluminum sheet is of great significance to ensure the appearance and quality of aluminum sheet. The surface defects of aluminum sheets have the characteristics of different shapes, obvious size differences, and difficult to obtain defect samples, which make defect detection challenging. In order to solve this problem, we make the following improvements to YOLOv3: Adding attention mechanism modules after the three feature layers output by the model backbone and after neck upsampling; Freezing the model backbone and using pretrained for transfer learning. The proposed YOLOv3 + ECA model is compared with the target detection models such as YOLOv3 and Faster-RCNN. It is found that the mAP of our model reaches 96.22%, which is higher than the current conventional algorithm. The AP values for different types of defects have good detection results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J., Song, B., Wei, Q., et al.: A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 35(2), 270–284 (2019)

    Article  Google Scholar 

  2. Tao, X., Zhang, D., Ma, W., et al.: Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci. 1575, 1–15 (2018)

    Google Scholar 

  3. Dehui, W., Lingxin, S., Wang, X., et al.: A novel non-destructive testing method by measuring the change rate of magnetic flux leakage. J. Nondestr. Eval. 36(2), 1–11 (2017)

    Article  Google Scholar 

  4. Malarvel, M., Singh, H.: An autonomous technique for weld defects detection and classification using multi-class support vector machine in X-radiography image. Optik 231, 166342 (2021)

    Article  Google Scholar 

  5. O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_10

    Chapter  Google Scholar 

  6. Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., Tang, S.: Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. Materials 13(24), 5755 (2020)

    Article  Google Scholar 

  7. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  8. Ding, R., Dai, L., Li, G., et al.: TDD-net: a tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol. 4(2), 110–116 (2019)

    Article  Google Scholar 

  9. He, D., Wen, J., Lai, Z., et al.: Textile fabric defect detection based on improved faster R-CNN. AATCC J. Res/ 8(1_suppl), 82–90 (2021)

    Article  Google Scholar 

  10. Guo, Z., Wang, C., Yang, G., et al.: MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface. Sensors 22(9), 3467 (2022)

    Article  Google Scholar 

  11. Yao, Z., Wang, L.: ERBANet: enhancing region and boundary awareness for salient object detection. Neurocomputing 448, 152–167 (2021)

    Article  Google Scholar 

  12. Li, Y.-L., Wang, S.: HAR-Net: Joint learning of hybrid attention for single-stage object detection. IEEE Transactions on Image Processing 29, 3092–3103 (2020)

    Article  MATH  Google Scholar 

  13. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  14. Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)

    Google Scholar 

  15. Hu, R., Liu, Y., Wang, Z., et al.: Blind quality assessment of night-time image. Displays 69, 102045 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Project of Jiangxi Provincial Department of Education under Grant no. GJJ200305 and GJJ191689, the Natural Science Foundation of Jiangxi Province under Grants no. 20202BABL202016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Hu, G., Huang, L. (2023). Surface Defect Detection Algorithm of Aluminum Sheet Based on Improved Yolov3. In: Cao, Y., Shao, X. (eds) Mobile Networks and Management. MONAMI 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-031-32443-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32443-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32442-0

  • Online ISBN: 978-3-031-32443-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics