Skip to main content

Competitive Kill-and-Restart and Preemptive Strategies for Non-clairvoyant Scheduling

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Abstract

We study kill-and-restart and preemptive strategies for the fundamental scheduling problem of minimizing the sum of weighted completion times on a single machine in the non-clairvoyant setting. First, we show a lower bound of 3 for any deterministic non-clairvoyant kill-and-restart strategy. Then, we give for any \(b > 1\) a tight analysis for the natural b-scaling kill-and-restart strategy as well as for a randomized variant of it. In particular, we show a competitive ratio of \((1+3\sqrt{3})\approx 6.197\) for the deterministic and of \(\approx 3.032\) for the randomized strategy by making use of the largest eigenvalue of a Toeplitz matrix. In addition, we show that the preemptive Weighted Shortest Elapsed Time First (WSETF) rule is 2-competitive when jobs are released online, matching the lower bound for the unit weight case with trivial release dates for any non-clairvoyant algorithm. Furthermore, we prove performance guarantees smaller than 10 for adaptions of the b-scaling strategy to online release dates and unweighted jobs on identical parallel machines.

Full version preprint: http://arxiv.org/abs/2211.02044.

The research of the second, third and fourth authors was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afrati, F., et al.: Approximation schemes for minimizing average weighted completion time with release dates. In: 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 32–43. IEEE (1999). https://doi.org/10.1109/SFFCS.1999.814574

  2. Anderson, E.J., Potts, C.N.: Online scheduling of a single machine to minimize total weighted completion time. Math. Oper. Res. 29(3), 686–697 (2004). https://doi.org/10.1287/moor.1040.0092

    Article  MathSciNet  MATH  Google Scholar 

  3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993). https://doi.org/10.1006/inco.1993.1054

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algorithms 3(4), 39:1–39:14 (2007). https://doi.org/10.1145/1290672.1290676

  5. Bansal, N., Pruhs, K.: Server scheduling in the weighted \({\ell }_{p}\)-norm. In: Farach-Colton, Martín (ed.) LATIN 2004. LNCS, vol. 2976, pp. 434–443. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_47

  6. Beaumont, O., Bonichon, N., Eyraud-Dubois, L., Marchal, L.: Minimizing weighted mean completion time for malleable tasks scheduling. In: 26th International Symposium on Parallel and Distributed Processing (IPDPS), pp. 273–284. IEEE (2012). https://doi.org/10.1109/ipdps.2012.34

  7. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize the total flow time on single and parallel machines. J. ACM 51(4), 517–539 (2004). https://doi.org/10.1145/1008731.1008732

    Article  MathSciNet  MATH  Google Scholar 

  8. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley Publishing Company, Boston (1967)

    MATH  Google Scholar 

  9. Epstein, L., van Stee, R.: Lower bounds for on-line single-machine scheduling. Theor. Comput. Sci. 299(1), 439–450 (2003). https://doi.org/10.1016/S0304-3975(02)00488-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Feldmann, A., Sgall, J., Teng, S.H.: Dynamic scheduling on parallel machines. Theor. Comput. Sci. 130(1), 49–72 (1994). https://doi.org/10.1016/0304-3975(94)90152-X

    Article  MathSciNet  MATH  Google Scholar 

  11. Garg, N., Gupta, A., Kumar, A., Singla, S.: Non-clairvoyant precedence constrained scheduling. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming (ICALP). LIPIcs, vol. 132, pp. 63:1–63:14 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.63

  12. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 288–300. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_22

    Chapter  Google Scholar 

  13. Goemans, M.X.: Improved approximation algorthims for scheduling with release dates. In: Proceedings of the Eighth Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 591–598. SIAM (1997)

    Google Scholar 

  14. Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single-machine scheduling. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 404–414. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_30

    Chapter  Google Scholar 

  15. Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equilibria: non-clairvoyant scheduling under polyhedral constraints. J. ACM 65(1), 1–33 (2017). https://doi.org/10.1145/3136754

    Article  MathSciNet  MATH  Google Scholar 

  16. Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: SelfishMigrate: A scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In: 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 531–540 (2014). https://doi.org/10.1109/FOCS.2014.63

  17. Jäger, S., Sagnol, G., Schmidt genannt Waldschmidt, D., Warode, P.: Competitive kill-and-restart and preemptive strategies for non-clairvoyant scheduling (2022). https://doi.org/10.48550/ARXIV.2211.02044

  18. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000). https://doi.org/10.1145/347476.347479

    Article  MathSciNet  MATH  Google Scholar 

  19. Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms. J. Alg. 29(1), 142–164 (1998). https://doi.org/10.1006/jagm.1998.0959

    Article  MathSciNet  MATH  Google Scholar 

  20. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996). https://doi.org/10.1006/inco.1996.0092

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J., Chwa, K.: Non-clairvoyant scheduling for weighted flow time. Inf. Process. Lett. 87(1), 31–37 (2003). https://doi.org/10.1016/S0020-0190(03)00231-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press (1984). https://doi.org/10.1016/B978-0-12-566780-7.50020-9

  23. Lindermayr, A., Megow, N.: Permutation predictions for non-clairvoyant scheduling. In: Proceedings of the 34th Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 357–368 (2022). https://doi.org/10.1145/3490148.3538579

  24. Megow, N., Vredeveld, T.: A tight 2-approximation for preemptive stochastic scheduling. Math. Oper. Res. 39(4), 1297–1310 (2014). https://doi.org/10.1287/moor.2014.0653

    Article  MathSciNet  MATH  Google Scholar 

  25. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theor. Comput. Sci. 130(1), 17–47 (1994). https://doi.org/10.1016/0304-3975(94)90151-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity and Computations. Martinus Nijhoff (1976). https://doi.org/10.1007/978-1-4613-4383-7

  27. Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-line. SIAM J. Comput. 24(6), 1313–1331 (1995). https://doi.org/10.1137/S0097539793248317

    Article  MathSciNet  MATH  Google Scholar 

  28. Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Oper. Res. Lett. 38(6), 585–588 (2010). https://doi.org/10.1016/j.orl.2010.08.012

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q. 3(1–2), 59–66 (1956). https://doi.org/10.1002/nav.3800030106

    Article  MathSciNet  Google Scholar 

  30. van Stee, R., La Poutré, H.: Minimizing the total completion time on-line on a single machine, using restarts. J. Alg. 57(2), 95–129 (2005). https://doi.org/10.1016/j.jalgor.2004.10.001

    Article  MathSciNet  MATH  Google Scholar 

  31. Vestjens, A.P.A.: On-line machine scheduling. Ph.D. thesis, Technische Universiteit Eindhoven (1997). https://doi.org/10.6100/IR500043, https://pure.tue.nl/ws/files/1545064/500043.pdf

  32. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Annual IEEE Symposium on Foundations of Computer Science (SFCS), pp. 222–227 (1977). https://doi.org/10.1109/SFCS.1977.24

Download references

Acknowledgements

We thank Sungjin Im for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Sagnol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jäger, S., Sagnol, G., Schmidt genannt Waldschmidt, D., Warode, P. (2023). Competitive Kill-and-Restart and Preemptive Strategies for Non-clairvoyant Scheduling. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics