Abstract
We study kill-and-restart and preemptive strategies for the fundamental scheduling problem of minimizing the sum of weighted completion times on a single machine in the non-clairvoyant setting. First, we show a lower bound of 3 for any deterministic non-clairvoyant kill-and-restart strategy. Then, we give for any \(b > 1\) a tight analysis for the natural b-scaling kill-and-restart strategy as well as for a randomized variant of it. In particular, we show a competitive ratio of \((1+3\sqrt{3})\approx 6.197\) for the deterministic and of \(\approx 3.032\) for the randomized strategy by making use of the largest eigenvalue of a Toeplitz matrix. In addition, we show that the preemptive Weighted Shortest Elapsed Time First (WSETF) rule is 2-competitive when jobs are released online, matching the lower bound for the unit weight case with trivial release dates for any non-clairvoyant algorithm. Furthermore, we prove performance guarantees smaller than 10 for adaptions of the b-scaling strategy to online release dates and unweighted jobs on identical parallel machines.
Full version preprint: http://arxiv.org/abs/2211.02044.
The research of the second, third and fourth authors was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy — The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afrati, F., et al.: Approximation schemes for minimizing average weighted completion time with release dates. In: 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 32–43. IEEE (1999). https://doi.org/10.1109/SFFCS.1999.814574
Anderson, E.J., Potts, C.N.: Online scheduling of a single machine to minimize total weighted completion time. Math. Oper. Res. 29(3), 686–697 (2004). https://doi.org/10.1287/moor.1040.0092
Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993). https://doi.org/10.1006/inco.1993.1054
Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algorithms 3(4), 39:1–39:14 (2007). https://doi.org/10.1145/1290672.1290676
Bansal, N., Pruhs, K.: Server scheduling in the weighted \({\ell }_{p}\)-norm. In: Farach-Colton, Martín (ed.) LATIN 2004. LNCS, vol. 2976, pp. 434–443. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_47
Beaumont, O., Bonichon, N., Eyraud-Dubois, L., Marchal, L.: Minimizing weighted mean completion time for malleable tasks scheduling. In: 26th International Symposium on Parallel and Distributed Processing (IPDPS), pp. 273–284. IEEE (2012). https://doi.org/10.1109/ipdps.2012.34
Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize the total flow time on single and parallel machines. J. ACM 51(4), 517–539 (2004). https://doi.org/10.1145/1008731.1008732
Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley Publishing Company, Boston (1967)
Epstein, L., van Stee, R.: Lower bounds for on-line single-machine scheduling. Theor. Comput. Sci. 299(1), 439–450 (2003). https://doi.org/10.1016/S0304-3975(02)00488-7
Feldmann, A., Sgall, J., Teng, S.H.: Dynamic scheduling on parallel machines. Theor. Comput. Sci. 130(1), 49–72 (1994). https://doi.org/10.1016/0304-3975(94)90152-X
Garg, N., Gupta, A., Kumar, A., Singla, S.: Non-clairvoyant precedence constrained scheduling. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming (ICALP). LIPIcs, vol. 132, pp. 63:1–63:14 (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.63
Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 288–300. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_22
Goemans, M.X.: Improved approximation algorthims for scheduling with release dates. In: Proceedings of the Eighth Annual ACM-SIAM Symposium Discrete Algorithms (SODA), pp. 591–598. SIAM (1997)
Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single-machine scheduling. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 404–414. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61310-2_30
Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equilibria: non-clairvoyant scheduling under polyhedral constraints. J. ACM 65(1), 1–33 (2017). https://doi.org/10.1145/3136754
Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: SelfishMigrate: A scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In: 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 531–540 (2014). https://doi.org/10.1109/FOCS.2014.63
Jäger, S., Sagnol, G., Schmidt genannt Waldschmidt, D., Warode, P.: Competitive kill-and-restart and preemptive strategies for non-clairvoyant scheduling (2022). https://doi.org/10.48550/ARXIV.2211.02044
Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000). https://doi.org/10.1145/347476.347479
Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms. J. Alg. 29(1), 142–164 (1998). https://doi.org/10.1006/jagm.1998.0959
Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996). https://doi.org/10.1006/inco.1996.0092
Kim, J., Chwa, K.: Non-clairvoyant scheduling for weighted flow time. Inf. Process. Lett. 87(1), 31–37 (2003). https://doi.org/10.1016/S0020-0190(03)00231-X
Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of uniform machines subject to release dates. In: Pulleyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press (1984). https://doi.org/10.1016/B978-0-12-566780-7.50020-9
Lindermayr, A., Megow, N.: Permutation predictions for non-clairvoyant scheduling. In: Proceedings of the 34th Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 357–368 (2022). https://doi.org/10.1145/3490148.3538579
Megow, N., Vredeveld, T.: A tight 2-approximation for preemptive stochastic scheduling. Math. Oper. Res. 39(4), 1297–1310 (2014). https://doi.org/10.1287/moor.2014.0653
Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theor. Comput. Sci. 130(1), 17–47 (1994). https://doi.org/10.1016/0304-3975(94)90151-1
Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity and Computations. Martinus Nijhoff (1976). https://doi.org/10.1007/978-1-4613-4383-7
Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-line. SIAM J. Comput. 24(6), 1313–1331 (1995). https://doi.org/10.1137/S0097539793248317
Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Oper. Res. Lett. 38(6), 585–588 (2010). https://doi.org/10.1016/j.orl.2010.08.012
Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q. 3(1–2), 59–66 (1956). https://doi.org/10.1002/nav.3800030106
van Stee, R., La Poutré, H.: Minimizing the total completion time on-line on a single machine, using restarts. J. Alg. 57(2), 95–129 (2005). https://doi.org/10.1016/j.jalgor.2004.10.001
Vestjens, A.P.A.: On-line machine scheduling. Ph.D. thesis, Technische Universiteit Eindhoven (1997). https://doi.org/10.6100/IR500043, https://pure.tue.nl/ws/files/1545064/500043.pdf
Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Annual IEEE Symposium on Foundations of Computer Science (SFCS), pp. 222–227 (1977). https://doi.org/10.1109/SFCS.1977.24
Acknowledgements
We thank Sungjin Im for helpful comments on an earlier version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jäger, S., Sagnol, G., Schmidt genannt Waldschmidt, D., Warode, P. (2023). Competitive Kill-and-Restart and Preemptive Strategies for Non-clairvoyant Scheduling. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-32726-1_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32725-4
Online ISBN: 978-3-031-32726-1
eBook Packages: Computer ScienceComputer Science (R0)