Skip to main content

Compatibility of Convergence Algorithms for Autonomous Mobile Robots (Extended Abstract)

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13892))

Abstract

We investigate autonomous mobile robots in the Euclidean plane. A robot has a function called target function to decide the destination from the robots’ positions, and operates in Look-Compute-Move cycles, i.e., identifies the robots’ positions, computes the destination by the target function, and then moves there. Robots can have different target functions. Let \(\varPhi \) and \(\varPi \) be a set of target functions and a problem, respectively. If the robots whose target functions are chosen from \(\varPhi \) always solve \(\varPi \), we say that \(\varPhi \) is compatible with respect to \(\varPi \). Suppose that \(\varPhi \) is compatible with respect to \(\varPi \). Then two swarms controlled by (possibly different) target functions in \(\varPhi \) can merge to form a larger swarm, and a broken robot can be replaced with another robot with any target function in \(\varPhi \), keeping the correctness of solving \(\varPi \). We investigate the convergence, the gathering, and some fault tolerant convergence problems, assuming crash failures, from the view point of compatibility.

Due to the space limitation, we omit most of the proofs and some contributions. The full version of the paper [4] contains them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Roughly, a target function is a function from \((R^2)^n\) to \(R^2\), where R is the set of real numbers and n is the number of robots, i.e., given a snapshot in \((R^2)^n\), it returns a destination point in \(R^2\). Later, we define a target function a bit more carefully.

  2. 2.

    Let P, D, and \(\boldsymbol{o}\) be the multiset of robots’ positions, the axes aligned minimum box containing P, and its center, respectively. Define \(\delta * D = \{ (1 - 2 \delta ) \boldsymbol{x} + 2 \delta \boldsymbol{o} : \boldsymbol{x} \in D \}\). A function \(\phi \) is \(\delta \)-inner, if \(\phi (P)\) is included in \(\delta * D\) for any P.

  3. 3.

    Here, we abuse term “algorithm,” since an algorithm must have a finite description. A target function may not. To compensate the abuse, we insist on giving a finite procedure when we show the existence of a target function.

  4. 4.

    That \((0,0) \not \in P\) means an error of eye sensor, which we assume will not occur, in this paper.

  5. 5.

    For the sake of completeness, we assume that \(\alpha (\phi ,P) = 0\) when \(\phi (P) = \bot \).

  6. 6.

    Since \((0,0) \in Q^{(i)}_t\) by definition, \(\boldsymbol{y} \not = \bot \).

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1063–1071 (2004)

    Google Scholar 

  2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15, 818–828 (1999)

    Article  Google Scholar 

  3. Asahiro, Y., Suzuki, I., Yamashita, M.: Monotonic self-stabilization and its application to robust and adaptive pattern formation. Theor. Comput. Sci. 934, 21–46 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asahiro, Y., Yamashita, M.: Compatibility of convergence algorithms for autonomous mobile robots. arXiv:2301.10949 (2023)

  5. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of the IEEE 33rd International Conference on Distributed Computing Systems, pp. 337–346 (2013)

    Google Scholar 

  6. Buchin, K., Flocchini, P., Kostitsyana, I., Peters, T., Santoro, N., Wada, K.: On the computational power of energy-constrained mobile robots: algorithms and cross-model analysis. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298, pp. 42–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9_3

    Chapter  Google Scholar 

  7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_52

    Chapter  Google Scholar 

  11. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric patterns with oblivious mobile robots. Distrib. Comput. 28, 131–145 (2015). https://doi.org/10.1007/s00446-014-0220-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Défago, X., Potop-Butucaru, M., Tixeuil, S.: Fault-tolerant mobile robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 234–251. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_10

    Chapter  Google Scholar 

  13. Flocchini, P.: Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 63–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_4

    Chapter  Google Scholar 

  14. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots. In: Synthesis Lectures on Distributed Computing Theory 10. Morgan & Claypool Publishers (2012)

    Google Scholar 

  15. Izumi, T., et al.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41, 26–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_12

    Chapter  Google Scholar 

  17. Prencipe, G.: Pattern formation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities. LNTCS, vol. 11340, pp. 37–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_3

    Chapter  Google Scholar 

  18. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and agreement problems. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64, 1–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant Numbers JP17K00024 and JP22K11915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Asahiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asahiro, Y., Yamashita, M. (2023). Compatibility of Convergence Algorithms for Autonomous Mobile Robots (Extended Abstract). In: Rajsbaum, S., Balliu, A., Daymude, J.J., Olivetti, D. (eds) Structural Information and Communication Complexity. SIROCCO 2023. Lecture Notes in Computer Science, vol 13892. Springer, Cham. https://doi.org/10.1007/978-3-031-32733-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32733-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32732-2

  • Online ISBN: 978-3-031-32733-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics