Skip to main content

APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13887))

Included in the following conference series:

  • 258 Accesses

Abstract

Traffic flow forecasting is a core task of urban governance and plays a vital role in the development of ITS. Because of the complexity and uncertainty of traffic patterns, it is of great challenge to capture spatial-temporal correlations. Recent researches mainly focus on the pre-defined adjacency matrix based on prior knowledge as the basis of spatial-temporal correlation modeling, but the fixed graph structure cannot adequately describe the dependency between traffic sensors. To tackle this issue, a novel deep learning model framework is proposed in this paper: Adaptive Partial Attention Diffusion Graph Convolutional Network(APADGCN), which consists of three main parts: 1) the Multi-Component module that divides the historical traffic flow into recent, daily-periodic, and weekly-periodic, to capture the traffic patterns of different periodic; 2) the spatial correlation modeling which can dynamically capture node relationships and model spatial dependency, and enhance the aggregation ability of low-order information; 3) the temporal correlation modeling which models long-term time dependencies using convolution and gating. The final result is obtained by the weighted fusion of the results of the multi-components. We compared our APADGCN with various baseline models in the four real datasets from the Caltrans Performance Measurement System (PeMS). The experimental results show that the prediction accuracy of APADGCN is better than that of the baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pang, X., Wang, C., Huang, G.: A short-term traffic flow forecasting method based on a three-layer k-nearest neighbor non-parametric regression algorithm. J. Transp. Technol. 6(4), 200–206 (2016)

    Google Scholar 

  2. Laptev, N., Yosinski, J., Li, L.E., Smyl, S.: Time-series extreme event forecasting with neural networks at uber. In: International Conference on Machine Learning, vol. 34, pp. 1–5 (2017)

    Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  4. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 922–929 (2019)

    Google Scholar 

  5. Bai, L., Yao, L., Kanhere, S.S., Yang, Z., Chu, J., Wang, X.: Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 29–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_3

    Chapter  Google Scholar 

  6. Geng, X., et al.: Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proceed. AAAI Conf. Artif. Intell. 33(01), 3656–3663 (2019)

    Google Scholar 

  7. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph waveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  8. Ahmed, M.S., Cook, A.R.: Analysis of freeway traffic time-series data by using box-Jenkins techniques (1997)

    Google Scholar 

  9. Chien, S.I.-J., Kuchipudi, C.M.: Dynamic travel time prediction with real-time and historic data. J. Transp. Eng. 129(6), 608–616 (2003)

    Article  Google Scholar 

  10. Nikovski, D., Nishiuma, N., Goto, Y., Kumazawa, H.: Univariate short-term prediction of road travel times. In Proceedings.: IEEE Intelligent Transportation Systems, vol. 2005, pp. 1074–1079 (2005). IEEE (2005)

    Google Scholar 

  11. Xiaoyu, H., Yisheng, W., Siyu, H.: Short-term traffic flow forecasting based on two-tier k-nearest neighbor algorithm. Procedia. Soc. Behav. Sci. 96, 2529–2536 (2013)

    Article  Google Scholar 

  12. Li, Z., Ren, Q., Chen, L., Sui, X., Li, J.: Multi-hierarchical spatial-temporal graph convolutional networks for traffic flow forecasting. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 4913–4919. IEEE (2022)

    Google Scholar 

  13. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C: Emerg. Technol. 54, 187–197 (2015)

    Article  Google Scholar 

  14. Cui, Z., Ke, R., Pu, Z., Wang, Y.: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values. Transp. Res. Part C: Emerg. Technol. 118, 102674 (2020)

    Article  Google Scholar 

  15. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)

    Google Scholar 

  16. Liu, M., Zeng, A., Xu, Z., Lai, Q., Xu, Q.: Time series is a special sequence: forecasting with sample convolution and interaction. arXiv preprint arXiv:2106.09305 (2021)

  17. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)

    Article  Google Scholar 

  18. Zhang, J., Zheng, Y., Qi, D.: Deep Spatio-temporal residual networks for citywide crowd flows prediction. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  19. Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)

  20. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  21. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol. 2, no. 2005, pp. 729–734 (2005)

    Google Scholar 

  22. Kong, X., Zhang, J., Wei, X., Xing, W., Lu, W.: Adaptive spatial-temporal graph attention networks for traffic flow forecasting. Appl. Intell. 52(4), 4300–4316 (2022)

    Article  Google Scholar 

  23. Zhang, C., et al.: Augmented multi-component recurrent graph convolutional network for traffic flow forecasting. ISPRS Int. J. Geo Inf. 11(2), 88 (2022)

    Article  Google Scholar 

  24. Wang, Y., Jing, C., Xu, S., Guo, T.: Attention based spatiotemporal graph attention networks for traffic flow forecasting. Inf. Sci. 607, 869–883 (2022)

    Article  Google Scholar 

  25. Zhang, W., Zhu, K., Zhang, S., Chen, Q., Xu, J.: Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting. Knowl.-Based Syst. 250, 109028 (2022)

    Article  Google Scholar 

  26. Zhang, S., Guo, Y., Zhao, P., Zheng, C., Chen, X.: A graph-based temporal attention framework for multi-sensor traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 23(7), 7743–7758 (2021)

    Article  Google Scholar 

  27. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  28. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  29. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  30. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Networks 20(3), 498–511 (2009)

    Article  Google Scholar 

  31. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  32. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  33. Liang, Y., Ke, S., Zhang, J., Yi, X., Zheng, Y.: GeoMAN: multi-level attention networks for geo-sensory time series prediction. IJCAI 2018, 3428–3434 (2018)

    Google Scholar 

  34. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. Proceed. AAAI Conf. Artif. Intell. 34(01), 1234–1241 (2020)

    Google Scholar 

  35. Xu, M., et al.: Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908 (2020)

  36. Jiang, S., Zhu, M., Li, J.: Traffic flow forecasting using a spatial-temporal attention graph convolutional network predictor. In: Meng, X., Xie, X., Yue, Y., Ding, Z. (eds.) SpatialDI 2020. LNCS, vol. 12567, pp. 107–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69873-7_8

    Chapter  Google Scholar 

  37. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  38. Qi, J., Zhao, Z., Tanin, E., Cui, T., Nassir, N., Sarvi, M.: A graph and attentive multi-path convolutional network for traffic prediction. IEEE Transactions on Knowledge and Data Engineering (2022)

    Google Scholar 

  39. Hamilton, J.D.: Time series analysis. Princeton University Press (2020)

    Google Scholar 

  40. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  41. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  42. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  43. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  44. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, B., Li, B., Wei, J., Wen, H. (2023). APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting. In: Meng, X., et al. Spatial Data and Intelligence. SpatialDI 2023. Lecture Notes in Computer Science, vol 13887. Springer, Cham. https://doi.org/10.1007/978-3-031-32910-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32910-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32909-8

  • Online ISBN: 978-3-031-32910-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics