Abstract
Due to the prevalence of location-based devices, user trajectories are widely available in daily life, and when an infectious disease outbreak occurs, contact tracking can be achieved by examining the trajectories of confirmed patients to identify other trajectories of direct or indirect contact. In this paper, we propose a generalized trajectory contact search (TCS) query that models the contact tracking problem and other similar trajectory-based problems. In addition, we propose a new method for building spatio-temporal indexes and an algorithm for DBSCAN clustering based on spatio-temporal lattices to find all contact trajectories, which iteratively performs a distance-based contact search to find all contact trajectories. The algorithm, which is able to downscale the location and time of trajectories into a one-dimensional data and maintain the spatio-temporal proximity of the data, reduces the dimensionality of the search and improves the time and space efficiency. Extensive experiments on large-scale real-world data demonstrate the effectiveness of our proposed solution compared to the baseline algorithm.
Supported by organization x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_19
Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal data sets. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp. 250–257 (2004)
Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In: ICDE, pp. 1457–1459. IEEE (2008)
van Kreveld, M., Löffler, M., Staals, F., Wiratma, L.: A refined definition for groups of moving entities and its computation. Int. J. Comput. Geom. Appl. 28(02), 181–196 (2018)
Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. PVLDB 3(1–2), 723–734 (2010)
Schmidt, J.M.: Interval stabbing problems in small integer ranges. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 163–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_18
Tang, L.A., et al.: On discovery of traveling companions from streaming trajectories. In: ICDE, pp. 186–197. IEEE (2012)
Xu, J., Lu, H., Bao, Z.: IMO: a toolbox for simulating and querying “infected” moving objects. PVLDB 13(12), 2825–2828 (2020)
Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gathering patterns over trajectories. TKDE 26(8), 1974–1988 (2013)
Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches to the indexing of moving object trajectories. In: Proceedings of VLDB, pp. 395–406 (2000)
van der Spek, S., van Schaick, J., de Bois, P., de Haan, R.: Sensing human activity: GPS tracking. Sensors 9(4), 3033–3055 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, S., Ding, Z. (2023). Contact Query Processing Based on Spatiotemporal Trajectory. In: Meng, X., et al. Spatial Data and Intelligence. SpatialDI 2023. Lecture Notes in Computer Science, vol 13887. Springer, Cham. https://doi.org/10.1007/978-3-031-32910-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-32910-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32909-8
Online ISBN: 978-3-031-32910-4
eBook Packages: Computer ScienceComputer Science (R0)