Abstract
Urban open spaces provides various benefits to citizens, but the thermal environment under this space is being affected by the accelerated urbanization and global warming. Based on this, this paper is dedicated to conducting research on improving the attractiveness of outdoor environmental spaces and improving outdoor thermal comfort. The main work of this paper is first to propose a street comfort model by considering both environmental and climatic factors, which is trained to learn using indirect data. Secondly, the comfort level of each street is combined with the frequency of non-motorized trips on that street to obtain the urgency index of rectification for that street and to achieve accurate recommendations for urban planning. Considering the public accessibility of the data in the paper in cities across China, this study can be easily deployed to other cities to support urban planning and provide useful recommendations for improvement of urban open spaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gong, F.-Y., Zeng, Z.-C., Ng, E., Norford, L.K.: Spatiotemporal patterns of street-level solar radiation estimated using Google Street View in a high-density urban environment. Build. Environ. 148 (2019)
Kong, F., Yin, H., Wang, C., Cavan, G., James, P.: A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban For. Urban Green. 13(4), 846–853 (2014a)
Li, X., Ratti, C., Seiferling, I.: Quantifying the shade provision of street trees in urban landscape: a case study in Boston, USA, using Google Street View. Landsc. Urban Plan. 169, 81–91 (2018)
Carrasco-Hernandez, R., Smedley, A.R., Webb, A.R.: Using urban canyon geometries obtained from Google Street View for atmospheric studies: potential applications in the calculation of street level total shortwave irradiances. Energy Build. 86, 340–348 (2015)
Matzarakis, A., Rutz, F., Mayer, H.: Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int. J. Biometeorol. 54(2) (2010)
Li, X., Ratti, C.: Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model. Landsc. Urban Plan. 191(C) (2019)
Deng M., Yang, W., Chen, C., Wu, Z., Liu, Y., Xiang, C.: Street-level solar radiation mapping and patterns profiling using Baidu Street View images. Sustain. Cities Soc. 75 (2021)
Höppe, P.: The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 43, 71–75 (1999)
Fanger, P.O.: Thermal Comfort. McGraw Hill, New York (1970)
Jendritzky, G., de Dear, R., Havenith, G.: UTCI–why another thermal index? Int. J. Biometeorol. 56, 421–428 (2012)
Gagge, A.P., Fobelets, A.P., Berglund, L.G.: A standard predictive index of human response to the thermal environment. ASHRAE Trans. 92 (1986)
Lai, D., et al.: A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 742 (2020, prepublish)
Fahmy, M., Kamel, H., Mokhtar, H., et al.: On the development and optimization of an urban design comfort model (UDCM) on a passive solar basis at mid-latitude sites. Climate 7(1), 1 (2019)
周宏轩, 陶贵鑫, 炎欣烨, 等.: 绿量的城市热环境效应研究现状与展望. Yingyong Shengtai Xuebao 31(8) (2020). (in Chinese)
Dyvia, H.A., Arif, C.: Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. In: IOP Conference Series: Earth and Environmental Science, vol. 622, no. 1, p. 012019. IOP Publishing (2021)
Xiong, L., Yao, Y.: Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm. Build. Environ. 202, 108026 (2021)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Louche, A., Maurel, M., Simonnot, G., Peri, G., Iqbal, M.: Determination of Angstrom’s turbidity coefficient from direct total solar irradiance measurements. Sol. Energy 38(2), 89–96 (1987)
Woolley, H.: Urban Open Spaces. Taylor and Francis, Abingdon (2003)
黄卓迪. 城市街道绿化对室外热舒适的影响研究. 华中农业大. (in Chinese)
Sarkar, C., Webster, C., Gallacher, J.: Healthy Cities–Public Health Through Urban Planning. Edward Elgar, Cheltenham (2014)
Takano, T., Nakamura, K., Watanabe, M.: Urban residential environments and senior citizens’ longevity in megacity areas: the importance of walkable green spaces. J. Epidemiol. Commun. Health 56(12), 913–918 (2002). https://doi.org/10.1136/jech.56.12.913
Maas, J., Van Dillen, S.M.E., Verheij, R.A., et al.: Social contacts as a possible mechanism behind the relation between green space and health. Health Place 15(2), 586–595 (2009)
Bricker, K.S., Hendricks, W.W., Greenwood, J.B., Aschenbrenner, C.A.: Californians’ perceptions of the influence of parks and recreation on quality of life. J. Park Recreat. Adm. 34(3), 64–82 (2016). https://doi.org/10.18666/JPRA-2016-V34-I3-7441
Ekkel, E.D., de Vries, S.: Nearby green space and human health: evaluating accessibility metrics. Landsc. Urban Plan. 157, 214–220 (2017)
Xu, K., Tartakovsky, A.M., Burghardt, J., et al.: Learning viscoelasticity models from indirect data using deep neural networks. Comput. Methods Appl. Mech. Eng. 387, 114124 (2021)
Climate Bulletin of Fujian Province in 2020. https://weibo.com/ttarticle/p/show?id=2309404614706022449491
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, L., Yu, Z., Huang, F., Zhu, D. (2023). Recommendations for Urban Planning Based on Non-motorized Travel Data and Street Comfort. In: Meng, X., et al. Spatial Data and Intelligence. SpatialDI 2023. Lecture Notes in Computer Science, vol 13887. Springer, Cham. https://doi.org/10.1007/978-3-031-32910-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-32910-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32909-8
Online ISBN: 978-3-031-32910-4
eBook Packages: Computer ScienceComputer Science (R0)