Skip to main content

Security Enhancement Method Using Shortened Error Correcting Codes

  • Conference paper
  • First Online:
Codes, Cryptology and Information Security (C2SI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13874))

  • 266 Accesses

Abstract

This paper proposes two methods that combine high error correcting capability with security enhancement to enable cryptographic communication even under high noise. The first method is a combination of symmetric key cryptography and Shortened LDPC, which enables two-way communication. It can be regarded as one type of mode of operation. The second method combines the McEliece method and Shortened QC-MDPC to realize one-way communication. It has the advantage of fast processing speeds compared to general asymmetric key cryptography and the ability to centrally manage key updates for many IoT modules. We performed computer simulations and analysed practical parameterization and security enhancement. Both methods are found to provide sufficient security and are expected to have a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, M.R., et al.: Classic mceliece: conservative codebased cryptography. Submission to the NIST post quantum standardization process (2020). https://classic.mceliece.org/nist/mceliece-20201010.pdf

  2. Aragon, N., et al.: Bike: bit flipping key encapsulation. Submission to the NIST post quantum standardization process (2020). https://bikesuite.org/

  3. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978). https://doi.org/10.1109/TIT.1978.1055873

  4. Bos, J.W., et al.: CRYSTALS - kyber: a cca-secure module-lattice-based KEM. IACR Cryptol. ePrint Arch., p. 634 (2017). http://eprint.iacr.org/2017/634

  5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

  6. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. IACR Cryptol. ePrint Arch., p. 230 (2018). http://eprint.iacr.org/2018/230

  7. Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., Lin, S.: A class of low-density parity-check codes constructed based on reed-solomon codes with two information symbols. In: Fossorier, M., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 98–107. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44828-4_12

    Chapter  MATH  Google Scholar 

  8. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962). https://doi.org/10.1109/TIT.1962.1057683

  9. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, Boston (1973)

    Google Scholar 

  10. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999). https://doi.org/10.1109/18.748992

  11. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: Mdpc-mceliece: new mceliece variants from moderate density parity-check codes. IACR Cryptology ePrint Archive 2012, 409 (2012). http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#MisoczkiTSB12

  12. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8, 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  13. Singh, H.: Code based cryptography: Classic mceliece. CoRR abs/1907.12754 (2019). http://arxiv.org/abs/1907.12754

  14. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem. In: Leighton, F.T., Shor, P.W. (eds.) Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 92–109. ACM (1997). https://doi.org/10.1145/258533.258559

  15. Watanabe, K., Kaguchi, R., Shinoda, T.: Shortened LDPC codes accelerate OSD decoding performance. EURASIP J. Wirel. Commun. Netw. 2021(1), 22 (2021). https://doi.org/10.1186/s13638-021-01901-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Sekiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekiguchi, T., Tanaka, H. (2023). Security Enhancement Method Using Shortened Error Correcting Codes. In: El Hajji, S., Mesnager, S., Souidi, E.M. (eds) Codes, Cryptology and Information Security. C2SI 2023. Lecture Notes in Computer Science, vol 13874. Springer, Cham. https://doi.org/10.1007/978-3-031-33017-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33017-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33016-2

  • Online ISBN: 978-3-031-33017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics