Skip to main content

Improving Conceptual Domain Characterization in Ontology Networks

  • Conference paper
  • First Online:
Research Challenges in Information Science: Information Science and the Connected World (RCIS 2023)

Abstract

The community of Conceptual Modeling (CM) perception that Semantic Interoperability cannot be achieved without the support of an ontology-driven approach has become increasingly consensual. Moreover, the more complex and extensive the domain of the application of conceptual models, the harder it is to achieve semantic consensus. Therefore, it has emerged the perception that ontologies built to describe complex domains should not be overly large or be used in isolation. Ontology Networks arose to cover this issue. The community had to deal with issues such as different ontologies of the network using the same concept with different meanings or the same term used to designate distinct concepts. We developed a framework for classifying ontologies that provides a stable and homogeneous environment to facilitate the ontological analysis process by dealing simultaneously with ontological and domain perspectives. This article presents our proposal where conceptualization is used to identify the relationships among the evaluated ontologies. Our goal is to facilitate semantic consensus, providing guidelines and best practices supported by a stable, homogeneous, and repeatable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.iso.org/standard/71952.html.

  2. 2.

    https://www.iso.org/standard/63712.html.

  3. 3.

    https://www.iso.org/standard/73906.html.

  4. 4.

    https://www.iso.org/standard/44375.html.

  5. 5.

    https://www.w3.org/TR/dwbp/.

  6. 6.

    “Functional requirements refer to the knowledge to be represented” [1].

  7. 7.

    Foundational Ontologies express very general concepts and their relations.

  8. 8.

    Domain Ontologies conceptualize for specific domains.

  9. 9.

    Task Ontologies conceptualize of domain tasks, processes, and activities.

  10. 10.

    Application Ontologies encompass both contexts of Domain and Task Ontologies.

  11. 11.

    Core Ontologies are more general than the other Non-Foundational Ontologies, but more specific than Foundational Ontologies.

  12. 12.

    Given the ontological notion adopted in UFO [21].

  13. 13.

    http://bron.alfa.csail.mit.edu/info.html.

  14. 14.

    http://alfagroup.csail.mit.edu/.

  15. 15.

    https://github.com/ALFA-group/BRON.

  16. 16.

    https://attack.mitre.org/.

  17. 17.

    https://capec.mitre.org/index.html.

  18. 18.

    https://github.com/mitre/engage.

  19. 19.

    https://cwe.mitre.org/.

  20. 20.

    https://www.cve.org/.

  21. 21.

    Our research is part of a project to develop KGs (TKG and DTKGs) through a comprehensive solution within a project with Accenture LTD. The consortium also has research in partnership with other academic research centers.

  22. 22.

    For example, see https://www.cvedetails.com/cve/CVE-1999-0067/. Note that CWE is not defined for this vulnerability in this example.

References

  1. de Almeida Falbo, R.: Sabio: Systematic approach for building ontologies. In: Onto. Com/odise@ Fois (2014)

    Google Scholar 

  2. Amdouni, E., Bouazzouni, S., Jonquet, C.: O’faire: ontology fairness evaluator in the agroportal semantic resource repository. In: Amdouni, E., Bouazzouni, S., Jonquet, C. (eds.) The Semantic Web: ESWC 2022 Satellite Events: Hersonissos, Crete, Greece, May 29-June 2, 2022, Proceedings, pp. 89–94. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11609-4_17

  3. Amdouni, E., Jonquet, C.: FAIR or FAIRer? An integrated quantitative FAIRness assessment grid for semantic resources and ontologies. In: Garoufallou, E., Ovalle-Perandones, M.-A., Vlachidis, A. (eds.) MTSR 2021. CCIS, vol. 1537, pp. 67–80. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98876-0_6

    Chapter  Google Scholar 

  4. Bernasconi, A., Guizzardi, G., Pastor, O., Storey, V.C.: Semantic interoperability: ontological unpacking of a viral conceptual model. BMC Bioinform. 23(11), 1–23 (2022)

    Google Scholar 

  5. Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S., Guizzardi, G.: SEON: a software engineering ontology network. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 527–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_34

    Chapter  Google Scholar 

  6. Brazhuk, A.: Towards automation of threat modeling based on a semantic model of attack patterns and weaknesses. arXiv preprint arXiv:2112.04231 (2021)

  7. Duarte, B.B., de Almeida Falbo, R., Guizzardi, G., Guizzardi, R., Souza, V.E.S.: An ontological analysis of software system anomalies and their associated risks. Data Knowl. Eng. 134, 101892 (2021)

    Google Scholar 

  8. Duarte, B.B., et al.: Ontological foundations for software requirements with a focus on requirements at runtime. Appl. Ontol. 13(2), 73–105 (2018)

    Article  Google Scholar 

  9. Duarte, B.B., Falbo, R.A., Guizzardi, G., Guizzardi, R.S.S., Souza, V.E.S.: Towards an ontology of software defects, errors and failures. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157, pp. 349–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_25

    Chapter  Google Scholar 

  10. Engelberg, G., Fumagalli, M., Kuboszek, A., Klein, D., Soffer, P., Guizzardi, G.: Towards an ontology-driven approach for process-aware risk propagation. arXiv preprint arXiv:2212.11763 (2022)

  11. Euzenat, J.: Revision in networks of ontologies. Artif. Intell. 228, 195–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. García S, A., Guizzardi, G., Pastor, O., Storey, V.C., Bernasconi, A.: An ontological characterization of a conceptual model of the human genome. In: Intelligent Information Systems: CAiSE Forum 2022, Leuven, Belgium, 6–10 June 2022, Proceedings, pp. 27–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07481-3_4

  13. Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. University of Trento, Technical report (2007)

    Google Scholar 

  14. Gómez-Pérez, A., Corcho, O.: Ontology languages for the semantic web. IEEE Intell. Syst. 17(1), 54–60 (2002)

    Article  Google Scholar 

  15. Gruninger, M.: Methodology for the design and evaluation of ontologies. In: International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  16. Gruninger, M.: Designing and evaluating generic ontologies. In: 12th European Conference of Artificial Intelligence, vol. 1, pp. 53–64. Citeseer (1996)

    Google Scholar 

  17. Guarino, N.: Formal ontology in information systems. In: Proceedings of the 1st International Conference, pp. 6–8. IOS Press, Trento, Italy, June 1998

    Google Scholar 

  18. Guarino, N.: The ontological level. Philosophy and the Cognitive Sciences (1994)

    Google Scholar 

  19. Guarino, N., Poli, R.: The role of formal ontology in the information technnology. Int. J. Human Comput. Stud. 43(5–6), 623–965 (1995)

    Article  Google Scholar 

  20. Guizzardi, G.: The role of foundational ontology for conceptual modeling and domain ontology representation, keynote paper. In: 7th International Baltic Conference on Databases and Information Systems (DB &IS), Vilnius, IEEE Press (2006)

    Google Scholar 

  21. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT, Centre for Telematics and Information Technology (2005)

    Google Scholar 

  22. Guizzardi, G.: Modal aspects of object types and part-whole relations and the de re/de dicto distinction. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 5–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72988-4_2

    Chapter  Google Scholar 

  23. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. Front. Artif. Intell. Appl. 155, 18 (2007)

    Google Scholar 

  24. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual modeling revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 94–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2_12

    Chapter  Google Scholar 

  25. Guizzardi, G.: Ontology, ontologies and the “I” of FAIR. Data Intell. 2, 181–191 (2020)

    Google Scholar 

  26. Hemberg, E., et al.: Linking threat tactics, techniques, and patterns with defensive weaknesses, vulnerabilities and affected platform configurations for cyber hunting (2021)

    Google Scholar 

  27. Hemberg, E., O’Reilly, U.M.: Using a collated cybersecurity dataset for machine learning and artificial intelligence. arXiv preprint arXiv:2108.02618 (2021)

  28. Kaloroumakis, P.E., Smith, M.J.: Toward a knowledge graph of cybersecurity countermeasures. Corporation (2021)

    Google Scholar 

  29. Kurniawan, K., Ekelhart, A., Kiesling, E.: An att &ck-kg for linking cybersecurity attacks to adversary tactics and techniques. In: In Proceedings of the International Semantic Web Conference (ISWC) (2021)

    Google Scholar 

  30. Mann, D.E., Christey, S.M.: Towards a common enumeration of vulnerabilities. In: 2nd Workshop on Research with Security Vulnerability Databases, Purdue University, West Lafayette, Indiana (1999)

    Google Scholar 

  31. Martin, R.A., Barnum, S.: Common weakness enumeration (CWE) status update. ACM SIGADA Ada Lett. 28(1), 88–91 (2008)

    Article  Google Scholar 

  32. Martins, B.F., Serrano, L., Reyes, J.F., Panach, J.I., Pastor, O.: Towards the Consolidation of Cybersecurity Standardized Definitions. Technical report. Version 2, Universidad Politecnica de Valencia (2021). http://hdl.handle.net/10251/163895

  33. Martins, B.F., Serrano, L., Reyes, J.F., Panach, J.I., Pastor, O.: Towards the consolidation of cybersecurity standardized definitions: a tool for ontological analysis. In: Proceedings of the XXIV Iberoamerican Conference on Software Engineering, CIbSE 2021, San José, Costa Rica, 2021, pp. 290–303. Curran Associates (2021)

    Google Scholar 

  34. Martins, B.F., Serrano, L., Reyes, J.F., Panach, J.I., Pastor, O., Rochwerger, B.: Conceptual characterization of cybersecurity ontologies. In: Grabis, J., Bork, D. (eds.) PoEM 2020. LNBIP, vol. 400, pp. 323–338. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_22

    Chapter  Google Scholar 

  35. Martins, B.F., et al.: A framework for conceptual characterization of ontologies and its application in the cybersecurity domain. Softw. Syst. Modeling 21(4), 1437–1464 (2022)

    Article  Google Scholar 

  36. Mazimwe, A., Hammouda, I., Gidudu, A.: Implementation of fair principles for ontologies in the disaster domain: A systematic literature review. ISPRS International Journal of Geo-Information 10(5), 324 (2021)

    Article  Google Scholar 

  37. Oliveira, Í., Fumagalli, M., Prince Sales, T., Guizzardi, G.: How FAIR are Security Core Ontologies? A Systematic Mapping Study. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 107–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_7

    Chapter  Google Scholar 

  38. Perini Barcellos, M., de Almeida Falbo, R.: Using a foundational ontology for reengineering a software enterprise ontology. In: Advances in Conceptual Modeling-Challenging Perspectives: ER 2009 Workshops CoMoL, ETheCoM, FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS, Gramado, Brazil, November 9–12, 2009. Proceedings 28. pp. 179–188. Springer (2009)

    Google Scholar 

  39. Sales, T.P., Baião, F., Guizzardi, G., Almeida, J.P.A., Guarino, N., Mylopoulos, J.: The Common Ontology of Value and Risk. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z., Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157, pp. 121–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_11

    Chapter  Google Scholar 

  40. Serrano, L., Martins, B.F., Serrano, J.F., Panach, J.I., Pastor, O.: Una encuesta acerca de la Definición de Conceptos de Ciberseguridad. Tech. rep., Universidad Politecnica de Valencia (2021), https://riunet.upv.es/handle/10251/174756

  41. Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A.: Introduction: Ontology engineering in a networked world. Springer (2012)

    Google Scholar 

  42. Van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in kbs development. International journal of human-computer studies pp. 183–292 (1997)

    Google Scholar 

  43. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.: The fair guiding principles for scientific data management and stewardship. Scientific data 3(1), 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed under the project Digital Knowledge Graph – Adaptable Analytics API with the financial support of Accenture LTD, the Generalitat Valenciana through the CoMoDiD project (CIPROM/2021/023), the Spanish State Research Agency through the DELFOS (PDC2021-121243-I00) and SREC (PID2021-123824OB-I00) projects, MICIN/AEI/10.13039/501 100011033 and co-financed with ERDF and the European Union Next Generation EU/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beatriz Franco Martins or Oscar Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, B.F., Román, J.F.R., Pastor, O., Hadad, M. (2023). Improving Conceptual Domain Characterization in Ontology Networks. In: Nurcan, S., Opdahl, A.L., Mouratidis, H., Tsohou, A. (eds) Research Challenges in Information Science: Information Science and the Connected World. RCIS 2023. Lecture Notes in Business Information Processing, vol 476. Springer, Cham. https://doi.org/10.1007/978-3-031-33080-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33080-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33079-7

  • Online ISBN: 978-3-031-33080-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics