Skip to main content

Subtropical Satisfiability for SMT Solving

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13903))

Included in the following conference series:

Abstract

A wide range of problems from aerospace engineering and other application areas can be encoded logically and solved using satisfiability modulo theories (SMT) tools, which themselves use dedicated decision procedures for the underlying theories.

Subtropical satisfiability is such a decision procedure for the theory of real arithmetic. Though incomplete, it is a very efficient algorithm and has a high potential for SMT solving. However, yet it has been seldomly used in this context. In this paper we elaborate on possibilities for the efficient usage of subtropical satisfiability in SMT solving.

Jasper Nalbach was supported by the DFG RTG 2236 UnRAVeL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Satisfiability modulo theories library for QF_NRA. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA

  2. The Satisfiability Modulo Theories Library (SMT-LIB). https://www.SMT-LIB.org

  3. Ábrahám, E., Davenport, J., England, M., Kremer, G.: Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings. J. Logical Algebraic Methods Program. 119, 100633 (2021). https://doi.org/10.1016/j.jlamp.2020.100633

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

    Chapter  Google Scholar 

  5. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 26, pp. 825–885. IOS Press (2009)

    Google Scholar 

  6. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. Found. Artif. Intell. 2, 571–603 (2006). https://doi.org/10.1016/S1574-6526(06)80020-9

    Article  MATH  Google Scholar 

  7. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_12

    Chapter  Google Scholar 

  8. Brown, C.W., Košta, M.: Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Comput. 70, 14–48 (2015). https://doi.org/10.1016/j.jsc.2014.09.024

    Article  MathSciNet  MATH  Google Scholar 

  9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  10. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_26

    Chapter  MATH  Google Scholar 

  11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_11

    Chapter  Google Scholar 

  14. Fontaine, P., Ogawa, M., Sturm, T., Vu, X.T.: Subtropical satisfiability. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 189–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_11

    Chapter  Google Scholar 

  15. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

    Chapter  Google Scholar 

  16. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Springer, Cham (2008)

    MATH  Google Scholar 

  17. Lai, G.: Subtropical satisfiability for polynomial constraint sets (2022). https://ths.rwth-aachen.de/wp-content/uploads/sites/4/lai_bachelor.pdf

  18. Marques-silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  20. Sali, Ö.: Linearization techniques for nonlinear arithmetic problems in SMT. Master’s thesis, RWTH Aachen University (2018). https://ths.rwth-aachen.de/wp-content/uploads/sites/4/teaching/theses/sali_master.pdf

  21. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60(2), 365–374 (1954). https://doi.org/10.2307/1969640

    Article  MathSciNet  MATH  Google Scholar 

  22. Sturm, T.: Subtropical real root finding. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC 2015), pp. 347–354 (2015). https://doi.org/10.1145/2755996.2756677

  23. Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). https://doi.org/10.1007/s002000050055

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Ömer Sali and Gereon Kremer for the implementation of the subtropical method as a CDCL(T) theory solver in SMT-RAT, and Giang Lai for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Nalbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nalbach, J., Ábrahám, E. (2023). Subtropical Satisfiability for SMT Solving. In: Rozier, K.Y., Chaudhuri, S. (eds) NASA Formal Methods. NFM 2023. Lecture Notes in Computer Science, vol 13903. Springer, Cham. https://doi.org/10.1007/978-3-031-33170-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33170-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33169-5

  • Online ISBN: 978-3-031-33170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics