2303.16582v2 [cs.LO] 17 Apr 2023

arxXiv

Satisfiability of
Non-Linear Transcendental Arithmetic as a
Certificate Search Problem

Enrico Lipparinil[ORCID:0009—0009—0428—4403] and Stefan
Ratschan2 [ORCID:0000—0003—1710—1513]

! DIBRIS, University of Genoa, Italy
2 Institute of Computer Science of the Czech Academy of Sciences

Abstract. For typical first-order logical theories, satisfying assignments
have a straightforward finite representation that can directly serve as a
certificate that a given assignment satisfies the given formula. For non-
linear real arithmetic with transcendental functions, however, no general
finite representation of satisfying assignments is available. Hence, in this
paper, we introduce a different form of satisfiability certificate for this
theory, formulate the satisfiability verification problem as the problem
of searching for such a certificate, and show how to perform this search
in a systematic fashion. This does not only ease the independent verifi-
cation of results, but also allows the systematic design of new, efficient
search techniques. Computational experiments document that the result-
ing method is able to prove satisfiability of a substantially higher number
of benchmark problems than existing methods.

1 Introduction

SAT modulo theories (SMT) is the problem of checking whether a given quantifier-
free first-order formula with both propositional and theory variables is satisfiable
in a specific first-order theory. In this paper, we consider the case of SMT(NTA),
non-linear real arithmetic augmented with trigonometric and exponential tran-
scendental functions. This problem is particularly important in the verification
of hybrid systems and in theorem proving. Unfortunately, N7 A is a very chal-
lenging theory. Indeed, it is undecidable [26], and, moreover, there is no known
finite representation of satisfying assignments that could act as a direct certifi-
cate of satisfiability. This does not only make it difficult for an SMT-solver to
prove satisfiability, but also raises the question of how to verify the result given
by an SMT-solver.

In this paper, we introduce the notion of a satisfiability certificate for N'TA.
Such a certificate allows independent entities to verify the satisfiability of a
given input formula without having to re-do a full check of its satisfiability. More
specifically, based on such a certificate, the check of satisfiability is both easier in
terms of computational effort and effort needed to implement the checker and to
ensure its correctness. The certificate will be based on the notion of topological

degree [ITITIT2], generalizing the idea that a sign change of a continuous function
f implies satisfiability of f = 0. The basic tool for checking correctness of the
certificate is interval arithmetic [282524].

The idea to verify satisfiability of SMT(NTA) in such a way, is not new [21].
However, the formulation as the problem of searching for a certificate is. In
addition to the possibility of independent verification, such a formulation makes
the corresponding search problem explicit. This allows us to introduce new,
efficient search heuristics that guide the algorithm toward finding a certificate
and prevent the procedure from getting stuck in computation that later turns
out to not to lead to success.

We have implemented our method in the tool UGOTNL [2I] and present
computational experiments with different heuristics configurations over a wide
variety of N'TA benchmarks. The experimental results show that this new version
of UGOTNL outperforms the previous version, making it—to the best of our
knowledge—the most effective solver for proving satisfiability of NTA problems.

It is possible to integrate the resulting method into a conflict-driven clause
learning (CDCL) type SMT solver [21]. However, in order to keep the focus of
the paper on the concern of certificate search, we ignore this possibility, here.

Content. The paper is organized as follows: In Section [2| we provide the neces-
sary background. In Section [3] we give the formal definitions of certifying SMT
solver and of satisfiability certificate in SMT(NTA). In Section 4| we outline our
method for searching for a certificate, and in Section [5| we illustrate the heuris-
tics that we introduce in detail. In Section [6] we experimentally evaluate our
method. In Section [7] we discuss related work. Finally, in Section [8 we draw
some conclusions.

2 Preliminaries

We work in the context of Satisfiability Modulo Theories (SMT). Our theory
of interest is the quantifier-free theory of non-linear real arithmetic augmented
with trigonometric and exponential transcendental functions, SMT(NTA). We
assume that the reader is familiar with standard SMT terminology [5].

Notation. We denote SMT(NTA)-formulas by ¢, 1, clauses by C1, Co, literals
by 1,15, real-valued variables by x1,xo,..., constants by a,b, intervals of real
values by I = [a,b], boxes by B = I} x --- x I, logical terms with addition,
multiplication and transcendental function symbols by f, g, and multivariate real
functions with F, G, H. For any formula ¢, we denote by wvarsz(¢) the set of its
real-valued variables. When there is no risk of ambiguity we write f,g to also
denote the real-valued functions corresponding to the standard interpretation
of the respective terms. We assume that formulas are in Conjunctive Normal
Form (CNF) and that their atoms are in the form f > 0, with 1 € {=, <, <}.
We remove the negation symbol by rewriting every occurrence of —(f = 0) as
(f <0V O0< f) and distributing — over inequalities.

Points and boxes. Since we have an order on the real-valued variables z1, o, . ..
for any set of variables V' C {x1,z9,...} we can view an assignment p: V — R
equivalently as the |V|-dimensional point p € RIVI, and an interval assignment
B:V — {[a,b] : a,b € R} equivalently as the |V|-dimensional box B C R!VI. By
abuse of notation, we will use both representations interchangeably, using the
type R" both for assignments in V' — R and points in RIV!, and the type BY
both for interval assignments in V' — {[a, b] : a,b € R} and corresponding boxes.
This will allow us to apply mathematical notions usually defined on points or
boxes to such assignments, as well. Given a point p € RV, and a subset V' C V,
we denote by projy.(p) € RV the projection of p to the variables in V’, that is,

for all v € V', projy. (p)(v) := p(v).

Systems of equations and inequalities. We say that a formula ¢ that
contains only conjunctions of atoms in the form f = 0 and g < 0 is a sys-
tem of equations and inequalities. If ¢ contains only equations (inequalities)
then we say it is a system of equations (inequalities). A system of equations
fi=0A--- A f, =0, where the f1,-- -, f,, are terms in the variables z1,- - , z,,
can be seen in an equivalent way as the equation F' = 0, where F' is the real-
valued function F' := f; X --- X fp, : R™ — R™ and 0 is a compact way to denote
the point (0,---,0) € R™. Analogously, we can see a system of inequalities
g1 <OA---Agr <0 as the inequality G < 0, where G is the real-valued func-
tion G := g1 X --- X gp : R™ — R* and < is defined element-wise. We will write
eq(¢) for the function F' defined by the equations in the formula ¢ and ineq(¢)
for the function G defined by the inequalities in ¢. The handling of strict in-
equalities would be an easy, but technical extension of our method, which we
avoid to stream-line the presentation.

Dulmage-Mendelsohn decomposition. Given a system of equations ¢, it is
possible to construct an associated bipartite graph G4 that represent important
structural properties of the system of equations. This graph has one vertex per
equation, one vertex per variable, and an edge between a variable x; and an equa-
tion f; = 0 iff z; appears in f. The Dulmage-Mendelsohn decomposition [10/2]
is a canonical decomposition from the field of matching theory that partitions
the system into three parts: an over-constrained subsystem (more equalities than
variables), an under-constrained subsystem (less equalities than variables), and
a well-constrained subsystem (as many equalities as variables, and contains no
over-constrained subsystem, i.e. it satisfies the Hall property [17]).

Ezample 1. Let ¢ := x —tan(y) = 0A 2?2 = 0Aw = 0 A sin(w) = 0. Through the
DM-decomposition we obtain an under-constrained sub-system x — tan(y) = 0
(two variables, one equation), a well-constrained sub-system z? = 0 (one variable,
one equation), and an over-constrained sub-system w = 0 A sin(w) = 0 (one
variable, two equations).

Topological degree. The notion of the degree of a continuous function (also
called the topological degree) comes from differential topology [11]. For a con-
tinuous function F' : B C R™ — R”, such that 0 ¢ F(JB) (where 0B is the
topological boundary of B), the degree deg(F, B,0) is a computable [TJT2] in-
teger. This integer provides information about the roots of F' in B, and can be
seen as a generalization of the intermediate value theorem to higher-dimensional
functions. In analogy to the fact that opposite signs of a continuous function on
the endpoints of an interval imply the existence of a zero within the interval,
deg(F, B,0) # 0 implies that F' has a root in B. The converse is not true, and
the existence of a root does not imply nonzero degree in general. Still, if a box
contains one isolated zero with non-singular Jacobian matrix, then the topologi-
cal degree is non-zero [I1]. For alternatives to the topological degree test see our
discussion of related work.

Interval Arithmetic. The basic algorithmic tool that underlies our approach
is floating point interval arithmetic (ZA [282524] which, given a box B and an
NTA-term representing a function H, is able to compute an interval ZAy (B)
that over-approximates the range {H(z) | + € B} of H over B. Since this is
based on floating point arithmetic, the time needed for computing ZA g (B) does
not grow with the size of the involved numbers. Moreover conservative rounding
guarantees correctness under the presence of round-off errors. In the paper, we
will use interval arithmetic within topological degree computation [12], and as a
tool to prove the validity of inequalities on boxes.

Robustness. We say that a formula ¢ is robust if there exists some € > 0 such
that ¢ is satisfiable iff every e-perturbation of ¢ is satisfiable (for the precise
definition of e-perturbation see [I3]). If ¢ is both robust and (un)satisfiable, we
say that it is robustly (un)sat.

Relation between robustness and system of equations: An over-constrained
system of equations is never robustly sat [I3, Lemma 5]. It easily follows that a
system of equations that contains an over-constrained sub-system (in the sense
of the Dulmage-Mendelsohn decomposition) is never robustly sat as well.

Relation between robustness and topological degree: Even in the case of an
isolated zero, the test for non-zero topological degree can fail if the system is
non-robust. For example, the function F(z) = 22 has topological degree 0 in the
interval [—1, 1], although the equality 2 = 0 has an isolated zero in this interval.
However, the zero of 22 = 0 is not robust: it can vanish under arbitrarily small
changes of the function denoted by the left-hand side z2. It can be shown that
the topological degree test is able to prove satisfiability in all robust cases for a
natural formalization of the notion of robustness [13]. We will not provide such a
formalization, here, but use robustness as an intuitive measure for the potential
success when searching for a certificate.

Logic-To-Optimization. While symbolic methods usually struggle dealing with
NTA, numerical methods, albeit inexact, can handle transcendental functions
efficiently. For this reason, an SMT solver can benefit from leveraging numeri-
cal techniques. In the Logic-To-Optimization approach [21[15], an SMT(N'TA)-
formula ¢ in m variables is translated into a real-valued non-negative function
L£20(¢) = H : R™ — R0 such that—up to a simple translation between
Boolean and real values for Boolean variables—each model of ¢ is a zero of
H (but not vice-versa). When solving a satisfiability problem, one can try to
first numerically minimize this function, and then use the obtained numerical
(approximate) solution to prove, through exact symbolic methods, that the log-
ical formula has indeed a model. For the precise definition of the operator £20
see [21], Section 3.

3 Goal

Consider an SMT solver that takes as input some formula ¢ and as output an
element of {sat,unknown,unsat}. How can we gain trust in the correctness of
the result of such an SMT solver? One approach would be to ensure that the
algorithm itself is correct. Another option is to provide a second algorithm whose
output we compare with the original one. Both approaches are, however, very
costly, and moreover, the latter approach still may be quite unreliable.

Instead, roughly following McConnell et. al. [23] (see also Figure [1)), we re-
quire our solver to return—in addition to its result—some information that
makes an independent check of this result easy:

Definition 1. An SMT solver is certifying iff for an input formula ¢, in addi-
tion to an element r € {sat, unknown, unsat}, it returns an object w (a certifi-
cate) such that

— (¢, r,w) satisfies a property W where W (¢, r,w) implies that r is a correct
result for ¢, and
— there is an algorithm (a certificate checker) that
o takes as input a triple (¢,r,w) and returns T iff W (¢, r,w), and that
o is simpler than the SMT solver itself.

result
input SOIVGI“ certificate yes/no
checker ——

Fig. 1. Certifying SMT Solver

So, for a given formula ¢, one can ensure correctness of the result (r,w)
of a certifying SMT solver by using a certificate checker to check the property
W (¢, r,w). Since the certificate checker is simpler than the SMT solver itself,
the correctness check is simpler than the computation of the result itself.

The definition leaves it open, what precisely is meant by “simpler”. In gen-
eral, it could either refer to the run-time of the checker, or to the effort needed for
implementing the certificate checker and ensuring its correctness. The former ap-
proach is taken in computational complexity theory, the latter in contexts where
correctness is the main concern [23]. Indeed, we will later see that our approach
succeeds in satisfying both requirements, although we will not use complexity-
theoretic measures of run-time, but will measure run-time experimentally.

The use of such certificates is ongoing research in the unsatisfiable case [4]. In
the satisfiable case, for most theories, one can simply use satisfying assignments
(i.e., witnesses) as certificates. Here the property W simply is the property that
the given assignment satisfies the formula, which can be checked easily.

For SMT(NTA), however, the situation is different: Here, no general finite
representation of satisfying assignments is available. Hence one needs to use
certificates of a different form. We introduce the following definition:

Definition 2. Let ¢ be a formula in NTA. A (satisfiability) certificate for ¢ is
a triple (o,v, 8) such that W (¢, sat, (o,v,3)) iff

— 0 18 a function selecting a literal from every clause of ¢

— v is a variable assignment in RY assigning floating point numbers to a subset
V Cwarsr(o(¢)) (where 0(¢) is a compact way of writing Ncey0(C)), s.t.
o(¢) contains as many equations as real-valued variables not in V.

— B is a finite set of interval assignments in BY =@\ such that their set-
theoretic union as boxes is again a box Bz and, for the system of equations
F:=eq(v(o(¢))) and the system of inequalities G := ineq(v(o(p))), it holds
that:

e 0 ¢ F(0Bg),
e deg(F,Bg,0) #0, and
o for every B € B, TAg(B) < 0.

Ezxample 2. Consider the formula
¢:=C1 ANCoNC3NCy

Cy = cos(y) =0 V sin(y) =e” Cs = x—y < cos(z)
Co = sin(y) =0 V cos(y) = sin(8z> —2) Cy = x4y > sin(2)

The following (o, v,) is a certificate:

— 0:={C1 — sin(y) = e* ; Cy = cos(y) = sin(8z* — z) ;
03|—>C3; 04'_>C4}

- v:={z2~— 02}

— B :={B}, where B := {zx — [-0.1,0.05] ; y — [1.4,1.9]}

1.9 T T T T T
sin(y)-e*=0 ——
sin(8x2-0.2) = 0

1.8

1.7

1.6

15

1.4 L L
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Fig. 2. Solution Sets of Equalities of Example Certificate

As can be seen in Figure [2] the solution sets of C; and Csy cross at a unique
point in B, which reflects the fact that the degree of the function (z,y) —
(sin(y) — €%, cos(y) — sin(8z% — 0.2)) is non-zero. Moreover, the inequalities Cs
and C4 hold on all elements of the box.

Due to the properties of the topological degree and of interval arithmetic
discussed in the preliminaries, we have:

Property 1. W (¢, sat, (o,v,3)) implies that ¢ is satisfiable.

Moreover, the topological degree can be computed algorithmically [TIT2], and
one can easily write a certificate checker based on such an algorithm. Hence such
a triple can be used as a certificate for satisfiability.

In this paper, we will show that in addition to the discussed benefits for
correctness, formulating satisfiability checking as the problem of search for such
certificates also is beneficial for efficiency of the SMT solver itself. Since we will
concentrate on satisfiability, we will simply ignore the case when an SMT solver
returns unsat, so the reader can simply assume that an SMT solver such as the
one from Figure [1| only returns an element from the set {sat,unknown}.

4 Method

Our goal is to find a triple (o, v, 8) that is a certificate of satisfiability for a given
formula ¢. So we have a search problem. In order to make this search as efficient
as possible, we want to guide the search toward a triple that indeed turns out to
be a certificate, and for which the corresponding conditions are computationally
easy to check.

Intuitively, we view the search for a certificate as a hierarchy of nested search
problems, where the levels of this hierarchy correspond to the individual compo-
nents of certificates. We formalize this using a search tree whose nodes on the i-th
level are labeled with i-tuples containing the first ¢ elements of the tuple searched
for, starting with the root note that is labeled with the empty tuple (). The tree

will be spanned by a function ch that assigns to each node (cy, ..., ¢;) of the tree
a sequence (21, ...,2,) of possible choices for the next tuple component. Hence
the children of (¢i,...,¢;) in the tree are (c1,...,¢,21),...,(c1,..., ¢, zy,). We
will do depth-first search in the resulting tree, searching for a leaf labeled by a
certificate of satisfiability for the input formula ¢.

Based on the observation that on each level of the tree one has the first i
components of the tuple available for determining a good sequence of choices,
we will add additional information as the first tuple component in the form of
a variable assignment p that satisfies the formula ¢ approximately. Hence we
search for a 4-tuple (p,o,v,).

It is easy to see that it would be possible to generalize such a search tree to
a more fine-grained one, where the individual levels are formed by parts of the
choices described above, and where the order of those levels can be arbitrary.
For example, it would be possible to first choose an interval for a variable (i.e.,
part of the box f), then select a literal from a certain clause (i.e., part of the
selection function), and so on. However, in this paper, we keep these levels
separated, as discussed above, in order to achieve a clear separation of concerns
when exploring design choices at the individual levels.

5 Certificate Search

In this section, we will discuss possibilities for search strategies by defining for ev-
ery search tree node labeled with tuple 7, the ordered sequence ch(7) of choices
for the next tuple element. Our framework allows for many more possibilities
from which we choose strategies that both demonstrate the flexibility of the
framework, and allow for efficient search, as will be demonstrated by the com-
putational experiments in Section [6}

In order to be able to refer to different variants of the search strategy in the
description of computational experiments, we will introduce keywords for those
variants that we will write in teletype font.

5.1 Points

The points ch() = (p1,...,pr) determining the first level of the search tree
are generated by an optimization problem defined on the formula ¢ following
the Logic-To-Optimization approach [21I]. Here we translate the satisfiability
problem into a numerical minimization problem, mapping the logic formula ¢
into the non-negative real-valued function £20(¢) = H : R" — R (called
the objective function) such that for every satisfying assignment, this objective
function is zero, and for assignments that do not satisfy the formula, the objective
function is typically (but not always) non-zero. Then we find local minima of H
through an unconstrained optimization algorithm such as basin hopping [30]. In
our implementation, we compute k = 100 local minima, and process them in the
order of their value.

5.2 Literals

Given a point p, we choose literal selector functions ch(p) = (o1,...,0%) by
restricting ourselves, for each clause C, to the literals [for which the objective
function restricted to [and evaluated in the point p is below a certain threshold.
That is, we determine the set of approximately satisfiable literals

Lo :={leC|L20(])(p) < €}.

Our literal selector functions will then correspond to the set of all approximately
satisfiable combinations,

{o|forall C € ¢,0(C) € L¢c},

that is, each o selects exactly one approximately satisfiable literal from each
clause. In order to maximize the chances of choosing a better literal combination,
we can sort each Lo according to the value of the respective objective functions
and then choose literal combinations using the corresponding lexicographic order
(we will refer to this heuristic as (sort-literals)).

While the point p is usually a good candidate in terms of distance from a
zero, it can sometimes lead to an inconsistent problem:

FEzample 3. Consider the formula

¢::Cl/\02
Ci=(z+y=0)V(x=e") Co=(z+y>ea)V(z=tan(y+e))

The numerical optimizer will be tempted to return first some point p; such as
{z — 1;y — —1}, that almost satisfies (x +y = 0) A (x + y > 1), instead
of a harder approximate solution involving transcendental functions and heavy
approximations, such as (z = e!9°*¥)A(z = tan(y-+e,)), that is exactly satisfiable
in a point py near (0, —).

Such inconsistencies may occur in many combinations of literals. We use a
strategy that detects them in situations where for certain clauses C, the set L¢
contains only one literal [. We will call such a literal | a forced literal, since, for
every literal selector function o, o(¢) will include I. Before starting to tackle
every approximately satisfiable literal combination, we first analyze the set of
forced literals. We do symbolic simplifications (such as rewriting and Gaussian
elimination) to check whether the set has inconsistencies that can be found at a
symbolic level (as in the previous example). If the symbolic simplifications detect
that the forced literals are inconsistent then we set ch(p) to the empty sequence
() which causes backtracking in depth-first search. We refer to the variant of the
algorithm using this check as (check-forced-literals).

Filtering out over-constrained systems. Given a literal selector function o,
we analyze the structure of the system of equations formed by the equations
selected by o through the Dulmage-Mendelsohn decomposition, that uniquely

decomposes the system into a well-constrained subsystem, an over-constrained
subsystem and an under-constrained subsystem. We filter out every literal com-
bination having a non-empty over-constrained subsystem, since this leads to a
non-robust sub-problem, referring to this heuristic as (filter-overconstr).

5.3 Instantiations

We define the instantiations ch(p, o) = (v1,. .., ;) based on a sequence of sets of
variables Vi, ..., V; to instantiate, and define v; := projy, (p). The uninstantiated
part of p after projection to a set of variables V; is then proj g, (s)\v; (), which
we will denote by p-y,.

For searching for the variables to instantiate, we use the Dulmage—Mendelsohn
decomposition constructed in the previous level of the hierarchy. We do not want
to instantiate variables appearing in the well-constrained sub-system, since do-
ing so would make the resulting system after the instantiation over-constrained.
Hence the variables to be instantiated should be chosen only from the variables
occurring in the under-constrained subsystem. This substantially reduces the
number of variable combinations that we can try. Denoting the variables satisfy-
ing this criterion by Vinder, this restricts V; C Vipder, for all i € {1,...,k}. This
does not yet guarantee that every chosen variable combination leads to a well-
constrained system after the instantiation. For example , the under-determined
system of equations x +y = 0 A z +w = 0 has four variables and two equations,
but becomes over-constrained after instantiating either the two variables x and
1y, or the variables z and w. So, for each V;, we further check whether the system
obtained after the instantiation is well-constrained (we refer to this heuristic as
(filter-overconstr-V)).

The method described in the previous paragraph only uses information about
which equations in the system contain which variables (i.e., it deals only with
the structure of the system, not with its content). Indeed, it ignores the point p.

To extract more information, we use the fact that a non-singular Jacobian
matrix of a function at one of its zeros implies a non-zero topological degree
wrt. every box containing this single zero [I1]. So we compute a floating point
approximation of the Jacobian matrix at point p (note that, in general, this
matrix is non-square). Our goal is to find a set of variables V' to instantiate such
that the Jacobian matrix corresponding to the resulting square system at the
point p_y has full rank. This matrix is the square sub-matrix of the original
Jacobian matrix that is the result of removing the instantiated columns.

A straight-forward way of applying the Jacobian criterion is, given random
variable instantiations, to filter out instantiations whose corresponding Jacobian
matrix is rank-deficient (filter-rank-deficient), similarly to what is done
in the previous paragraph with the overconstrained filter. Note that, as the
Jacobian matrix of non-well-constrained system of equations is always rank-
deficient, this filter is stronger than the previous one. However, it may filter out
variable instantations that result in a non-zero degree (e.g., the function 2 has
non-zero degree in [—1, 1], but its Jacobian matrix at the origin is rank deficient
since f/(0) = 0).

We can further use the information given by the Jacobian matrix not only
to filter out bad variable instantiations, but also to maximize the chance of
choosing good variable instantiations from the beginning. Indeed, not all vari-
able instantiations will be equally promising, and it makes sense to head for
an instantiation such that the resulting square matrix not only has full rank,
but—in addition—is far from being rank-deficient (i.e., it is as robust as possi-
ble). We can do so by modifying Kearfott’s method [19, Method 2] which fixes
the coordinates most tangential to the orthogonal hyper-plane of F' in p by first
computing an approximate basis of the null space of the Jacobian matrix in the
point, and then choosing the variables with maximal sum of absolute size. We
use a modification of the method that uses a variable ordering w.r.t. this sum,
and then extracts the sets of variables V1, V5, ... in decreasing order w.r.t. the
cumulative sum of the value of the variables in each set. We refer to this heuristic
as (Kearfott-ordering).

5.4 Box

We construct boxes around p—_y, where V' is the set of variables v instantiates,
that is, v € RY. So we define ch(p,o,v) := (B1,...,Be) s.t. for all i € {1,...,k},
for all B € 8;, B € B**®~V and p_y € Upgey, B-

We use two different methods, (eps-inflation) and (box-gridding):

— Epsilon-inflation [22] is a method to construct incrementally larger boxes
around a point. In this case, the 1, ..., 8 will each just contain one single
box B, defined as the box centered at p_y having side length 2%, where,
in our setting, e = 10720, We terminate the iteration if either ZAg(B;) < 0
and deg(F, B;,0) # 0, in which case we found a certificate, or we reach an
iteration limit (in our setting when 2% > 1).

— Box-gridding is a well-known technique from the field of interval arithmetic
based on iteratively refining a starting box into smaller sub-boxes. Here
we use a specific version, first proposed in [I3] and then implemented with
some changes in [21]. In the following we roughly outline the idea behind
the algorithm, and refer to the other two papers for details. We start with
a grid that initially contains a starting box. We then iteratively refine the
grid by splitting the starting box into smaller sub-boxes. At each step, for
each sub-box B we first check whether interval arithmetic can prove that the
inequalities or the equations are unsatisfiable, and, if so, we remove B from
the grid. We check also whether deg(F, B,0) # 0 and interval arithmetic can
prove the satisfiability of the inequalities, and, if so, then we terminate our
search, finding a certificate with the singleton $; = {B}. In some cases, in
order to verify the satisfiability of the inequalities, we will have to further
split the box B into sub-boxes, using the set of resulting sub-boxes instead of
the singleton {B}. After each step, if there are sub-boxes left in the grid, we
continue the refinement process. Otherwise, if the grid is empty, we conclude
that there cannot be solutions in the starting box. If a certain limit to the grid
size is exceeded, we also stop the box gridding procedure without success.

For both methods, if the method stops without success, we have arrived at the
last element of the sequence of choices (f1, ..., Bx) without finding a certificate,
which results in backtracking of the depth-first search for a certificate.

Both mentioned methods have their advantages, and can be seen as com-
plementary. Epsilon-inflation is quite fast, and performs particularly well if the
solution is isolated and is near the center. However, if there are multiple solutions
in a box, the topological degree test can potentially fail to detect themEL and if
the solution is far from the center then we need a bigger box to encompass it,
which is less likely to be successful than a smaller box, as we require the inequal-
ities to hold everywhere in the box, and, moreover, the chance of encompassing
other solutions (thus incurring in the previous problem) grows.

The box-gridding procedure, on the other side, can be quite slow, as in the
worst case the number of sub-boxes explodes exponentially. However, grid re-
finement leads to a very accurate box search, which allows us to avoid the issues
faced with epsilon inflation (i.e. multiple solutions, or a solution far from the
center). Moreover, if the problem is robust, we have the theoretical guarantee
that the procedure will eventually converge to a solution [I3], although this does
not hold in practice due to the introduced stopping criterion.

Indeed, a third approach is to combine the two methods: first use epsilon
inflation, that is often able to quickly find a successful box, and, if it fails, then
use the more accurate box-gridding procedure.

6 Computational Experiments

Implementation. We implemented the different heuristics presented in the pa-
per in a prototype tool called UGOTNL (firstly presented in [2I]). In order to
make the results comparable with the ones obtained earlier, in addition to the
search method discussed in Section [} we preserve the following heuristics used
by UGOTNL: If the local minimizer cannot find any minimum of £20(¢) for
which for every clause C' € ¢, the set of approximately satisfiable literals Lg
is non-empty, we restart the procedure on every conjunction resulting from the
DNF of ¢. The tool handles strict inequalities of the form f < 0 directly until the
box construction phase, where they are replaced by f < —e (with e = 10729).
For computing the topological degree, we use TOPDECﬂ For the symbolic sim-
plifications used in (check-forced-literals), we use the simplify and the
solve-egqs tactics provided by z3 [Q]El For the computation of the rank used in
(filter-rank-deficient), we observe that the rank of a matrix is equal to the
number of non-zero singular values, hence we consider a matrix far from rank-
deficiency iff all its singular values are bigger than some threshold (to account
for approximation errors). We use a threshold widely used by algorithms for

3 For example, for f(z) = 2*—1, deg(f,[—10,10],0) = 0, while deg(f, [-10,0],0) = —1,
and deg(f,[0,10],0) = 1.

4 Available at https://www.cs.cas.cz/~ratschan/topdeg/topdeg . html

5 For a description of the two tactics: https://microsoft.github.io/z3guide/docs/
strategies/summary. The version of z3 used is 4.5.1.0.

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html
https://microsoft.github.io/z3guide/docs/strategies/summary
https://microsoft.github.io/z3guide/docs/strategies/summary

(check-forced-literals)

Heuristics (id.)
N. solved Literals Instantiations Boxes
323 (box-gridding) | (1.a.)
355 (eps-inflation)| (1.b.)
(eps-inflation)
356 (box-gridding) (Lc)
362 (sort-literals) (eps-inflation)| (2.b.)
. (eps-inflation)
361 (sort-literals) (box-gridding) (2.c.)
(sort-literals) . .
370 (filter-overconstr) (eps-inflation)| (3.b.)
367 .(sort—llterals) (eps—lnfhlathlon) (3..)
(filter-overconstr) (box-gridding)
(sort-literals)
406 (filter-overconstr) (eps-inflation)| (4.b.)

(sort-literals)

(eps-inflation)

410 (filter-overconstr) (box-gridding) (4.c.)
(check-forced-literals) & g
(sort-literals)
409 (filter-overconstr) (Kearfott-ordering) |(eps-inflation)| (5.b.)
(check-forced-literals)
(sort-literals) (eps—inflation)
412 (filter-overconstr) (Kearfott-ordering) (‘tf)ox— ridding) (5.c.)
(check-forced-literals) & &
(sort-literals)
K fott-orderi
424 (filter-overconstr) (;i]e.::r?ove:‘l;oz::tfi)l) (eps-inflation)| (6.b.)
(check-forced-literals)
t-1it 1
Fsor iterals) (Kearfott-ordering) |(eps-inflation)
426 (filter-overconstr) (filter-overconstr-V) | (box-gridding) (6.c)
(check-forced-literals) & &
(sort-literals) (Kearfott-ordering)
427 (filter-overconstr) (filter-overconstr-V) |(eps-inflation)| (7.b.)
(check-forced-literals) |(filter-rank-deficient)
(sort-literals) (Kearfott-ordering) (eps—inflation)
426 (filter-overconstr) (filter-overconstr-V) (lfox— ridding) (7.c.)
(check-forced-literals) |(filter-rank-deficient) & g
441 Virtual best

Fig. 3. Summary of the results for different heuristics configurations. Each row corre-
spond to a configuration. The first column from the left contains the number of bench-
marks solved; the central columns indicate the heuristics used, separated by search
level; the last column contains an identifier of the configuration. The last row is for the
virtual best of the different configurations.

determining the matrix rank, which is opaxdim(A)e, where opmax is the largest
singular value of A, and ¢ is the machine epsilon.

Setup. We run the experimentsﬂ on a cluster of identical machines equipped
with 2.6GHz AMD Opteron 6238 processors. We set a time limit of 1000 sec-
onds, and a memory limit of 2Gb. We considered all SMT(NTA) benchmarks
from the dReal distribution[16] and other SMT(NTA) benchmarks coming from
the discretization of Bounded Model Checking of hybrid automata [273], totaling
1931 benchmarks. All of these benchmarks come with "unknown” status. Ac-
cording to experiments performed on other solvers (cvc5s, MATHSAT, DREAL),
among these benchmarks 736 (respectively, 136) are claimed to be unsatisfiable
(satisfiable) by at least one solvelm We tested our tool with different heuristics
configurations (Figure |3), and, for each configuration, we checked that our tool
never contradict the other tools. We have arranged the heuristics into 3 columns
(Literals, Instantiations, and Boxes) according to the search level they are used
in. As the number of possible configurations is quite high, we proceed as follows:
We start with the simpler configurations (just one method for finding a box that
contains a solution), and then we add heuristics.

Results. In the first configurations we tested the 3 possible ways to search for a
box. We note that (box-gridding) (1.a.) performs considerably worse than the
other two, (eps-inflation) (1.b.) and (eps-inflation) + (box-gridding)
(1.c.), which produce comparable results. Because of that, and for readabil-
ity’s sake, we did not use (box-gridding) alone with other heuristics in the
next configurations, but only considered the other two options. We then added
heuristics based on the following criteria: first heuristics for the ”Literals” choice,
then heuristics for the ”Instantiations” choice, and first ordering heuristics (i.e.
(sort-literals) and (Kearfott-ordering)), then filtering heuristics (all the
others). At every new heuristic added, we see that the number of benchmarks
solved grows regardless of the ”Boxes” choice, with the best configuration reach-
ing 427 benchmarks using 7 heuristics. If we consider the virtual best (i.e. run in
parallel all the configurations and stop as soon as a certificate is found) we are
able to solve 441 benchmarks. This is because in cases such as (eps-inflation)
vs. (eps-inflation) +(box-gridding), or such as (filter-overconstr-V)
vs. (filter-rank-deficient), there is no dominant choice, with each configu-
ration solving benchmarks that the other does not solve and vice-versa.

Discussion. The first configuration (1.a.) essentially uses a method proposed
earlier [2I] and implemented in a tool called UGOTN Lyager (of which the tool pre-
sented in this paper is an upgrade). Already in the previous paper, UGOTNLgqer
outperformed the other solvers able to prove satisfiability in SMT(NTA), solv-
ing more than three times the benchmarks than MATHSAT [§], cves [20], and
ISAT3 [I4], and almost as twice as the benchmarks solved by the lazy ver-
sion MATHSAT+UGOTNL (where UGOTNL had been integrated lazily inside
MATHSAT). Here we show that the new heuristics introduced further improve

5 The results of the experiments are available at https://doi.org/10.5281/zenodo.
CTTTALLT
" For the results of such experiments, see [21].

https://doi.org/10.5281/zenodo.7774117
https://doi.org/10.5281/zenodo.7774117

the performances of our tool, that is now able to solve around 100 benchmarks
more.

Run-time of the certificate checker. In Section |3| we claimed that, with our
approach, checking a certificate requires less run-time than the certificate search
itself. Here we experimentally quantify this amount: for each benchmark solved
by the best configuration (7.b.), we observe the run-time required to check the
certificate (which amounts, essentially, to the computation of topological degree
and interval arithmetic for the successful box). In terms of median (respectively,
mean), checking the certificate requires 0.10% (1.07%) of the run-time used by
the solver.

7 Related Work

One strategy for proving satisfiability in SMT(NTA) is to prove a stricter re-
quirement that implies satisfiability, but is easier to check. For example, one
can prove that all elements of a set of variable assignments satisfy the given for-
mula [I4], or that a given variable assignment satisfies the formula for all possible
interpretations of the involved transcendental functions within some bounds [7].
Such methods may be quite efficient in proving satisfiability of formulas with
inequalities only, since those often have full-dimensional solution sets. However,
such methods usually fail to prove satisfiability of equalities, except for special
cases with straightforward rational solutions.

Computation of formally verified solutions of square systems of equations is
a classical topic in the area of interval analysis [28/25]24]. Such methods usually
reduce the problem either to fixpoint theorems such as Brouwer’s fixpoint theo-
rem or special cases of the topological degree, for example, Miranda’s theorem.
Such tests are easier to implement, but less powerful than the topological degree
(the former fails to verify equalities with double roots, such as 3 = 0, and the
latter requires the solution sets of the individual equalities to roughly lie normal
to the axes of the coordinate system).

In the area of rigorous global optimization, such techniques are applied [I8/19]
to conjunctions of equalities and inequalities in a similar way as in this paper,
but with a slightly different goal: to compute rigorous upper bounds on the
global minimum of an optimization problem. This minimum is often attained at
the boundary of the solution set of the given inequalities, whereas satisfiability
is typically easier to prove far away from this boundary.

We are only aware of two approaches that extend verification techniques for
square systems of equations to proving satisfiability of quantifier-free non-linear
arithmetic [29121], one [29] being restricted to the polynomial case, and the
other one also being able to handle transcendental function symbols. Neither
approach is formulated in the form of certificate search. However, both could
be interpreted as such, and both could be extended to return a certificate. The
present paper actually does this for the second approach [2I], and demonstrates
that this does not only ease the independent verification of results, but also allows

the systematic design of search techniques that result in significant efficiency
improvements.

An alternative approach is to relax the notation of satisfiability, for example
using the notion of §-satisfiability [I6lJ6], that does not guarantee that the given
formula is satisfiable, but only that the formula is not too far away from a satisfi-
able one, for a suitable formalization of the notion of “not too far away”. Another
strategy is to return candidate solutions in the form of bounds that guarantee
that certain efforts to prove unsatisfiability within those bounds fail [14].

8 Conclusions

We introduced a form of satisfiability certificate for SMT(NTA) and formulated
the satisfiability verification problem as the problem of searching for such a cer-
tificate. We showed how to perform this search in a systematic fashion introduc-
ing new and efficient search techniques. Computational experiments document
that the resulting method is able to prove satisfiability of a substantially higher
number of benchmark problems than existing methods.

Acknowledgments

The authors thank Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani
for helpful discussions on the topic of the paper. The work of Stefan Ratschan
was supported by the project GA21-09458S of the Czech Science Foundation
GA CR and institutional support RVO:67985807.

References

1. Oliver Aberth. Computation of topological degree using interval arithmetic, and
applications. Math. Comput., 62(205):171-178, jan 1994.

2. Samy Ait-Aoudia, Roland Jégou, and Dominique Michelucci. Reduction of con-
straint systems. CoRR, abs/1405.6131, 2014.

3. Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. Hyst: A source trans-
formation and translation tool for hybrid automaton models. In Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC ’15, page 128-133, New York, NY, USA, 2015. Association for Computing
Machinery.

4. Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt, Aina
Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Arjun Viswanathan, Scott
Viteri, Yoni Zohar, Cesare Tinelli, and Clark Barrett. Flexible proof production
in an industrial-strength smt solver. In Automated Reasoning: 11th International
Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10, 2022, Proceedings, page
15-35, Berlin, Heidelberg, 2022. Springer-Verlag.

5. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satis-
fiability modulo theories. In Handbook of Satisfiability, 2021.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Franz Braufle, Konstantin Korovin, Margarita Korovina, and Norbert Miiller. The
ksmt Calculus Is a §-complete Decision Procedure for Non-linear Constraints, vol-
ume 12699 of Lecture Notes in Computer Science, pages 113—-130. Springer, 2021.
Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and Roberto
Sebastiani. Incremental linearization for satisfiability and verification modulo non-
linear arithmetic and transcendental functions. ACM Trans. Comput. Logic, 19(3),
aug 2018.

Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebas-
tiani. The MathSAT5 SMT Solver. In Nir Piterman and Scott Smolka, editors,
Proceedings of TACAS, volume 7795 of LNCS. Springer, 2013.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
page 337-340, Berlin, Heidelberg, 2008. Springer-Verlag.

A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian
Journal of Mathematics, 10:517-534, 1958.

Irene Fonseca and Wilfrid Gangbo. Degree Theory in Analysis and Applications.
Clarendon Press, Oxford, 1995.

Peter Franek and Stefan Ratschan. Effective topological degree computation based
on interval arithmetic. Mathematics of Computation, 84:1265-1290, 2015.

Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. Quasi-decidability of a frag-
ment of the first-order theory of real numbers. Journal of Automated Reasoning,
57(2):157-185, 2016.

Martin Franzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schu-
bert. Efficient solving of large non-linear arithmetic constraint systems with com-
plex boolean structure. JSAT, 1:209-236, 05 2007.

Zhoulai Fu and Zhendong Su. Xsat: A fast floating-point satisfiability solver.
In CAV (2), volume 9780 of Lecture Notes in Computer Science, pages 187-209.
Springer, 2016.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for
nonlinear theories over the reals. In Maria Paola Bonacina, editor, Automated
Deduction—CADE-24, pages 208—214, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
s1-10(1):26-30, 1935.

E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, New
York, 1992.

R. Baker Kearfott. On proving existence of feasible points in equality constrained
optimization problems. Mathematical Programming, 83(1):89-100, 1998.

Gereon Kremer, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. Cooperating
techniques for solving nonlinear real arithmetic in the cveb SMT solver (system
description). In Jasmin Blanchette, Laura Kovécs, and Dirk Pattinson, editors,
Automated Reasoning, pages 95—-105, Cham, 2022. Springer International Publish-
ing.

Enrico Lipparini, Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.
Handling polynomial and transcendental functions in smt via unconstrained opti-
misation and topological degree test. In Ahmed Bouajjani, Lukas Holik, and Zhilin
Wu, editors, Automated Technology for Verification and Analysis, pages 137-153,
Cham, 2022. Springer International Publishing.

G. Mayer. Epsilon-inflation in verification algorithms. Journal of Computational
and Applied Mathematics, 60:147-169, 1994.

23.

24.

25.

26.

27.

28.

29.

30.

R.M. McConnell, K. Mehlhorn, S. Naher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119 — 161, 2011.

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval
Analysis. STAM, 2009.

Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, Cambridge, 1991.

Daniel Richardson. Some undecidable problems involving elementary functions of
a real variable. J. Symb. Log., 33(4):514-520, 1968.

Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Hare: A hybrid ab-
straction refinement engine for verifying non-linear hybrid automata. In Axel
Legay and Tiziana Margaria, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 573588, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

Siegfried M. Rump. Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica, page 3—4, 2010.

Tung Vu Xuan, To Khanh, and Mizuhito Ogawa. raSAT: an SMT solver for
polynomial constraints. Formal Methods in System Design, 51, 12 2017.

David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping
and the lowest energy structures of Lennard-Jones clusters containing up to 110
atoms. The Journal of Physical Chemistry A, 101(28):5111-5116, 1997.

	Satisfiability of Non-Linear Transcendental Arithmetic as a Certificate Search Problem

