Skip to main content

Learning Symbolic Timed Models from Concrete Timed Data

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2023)

Abstract

We present a technique for learning explainable timed automata from passive observations of a black-box function, such as an artificial intelligence system. Our method accepts a single, long, timed word with mixed input and output actions and learns a Mealy machine with one timer. The primary advantage of our approach is that it constructs a symbolic observation tree from a concrete timed word. This symbolic tree is then transformed into a human comprehensible automaton. We provide a prototype implementation and evaluate it by learning the controllers of two systems: a brick-sorter conveyor belt trained with reinforcement learning and a real-world derived smart traffic light controller. We compare different model generators using our symbolic observation tree as their input and achieve the best results using k-tails. In our experiments, we learn smaller and simpler automata than existing passive timed learners while maintaining accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the approach also works with more than one word.

  2. 2.

    A note on the experiment design: since the symbolic abstraction is not learned (i.e., does not extrapolate beyond certain knowledge), we do not evaluate its performance but focus on the utility in model learning. We fix adequate initial conditions for computing the trace databases.

  3. 3.

    A problem with applying TkT to the intersection’s logs is that an unbounded number of inputs can occur before a relevant output (i.e., cars being detected before the signal switches). As a result, no k can be chosen that would avoid overfitting.

References

  1. Aichernig, B.K., Muškardin, E., Pferscher, A.: Active vs. passive: a comparison of automata learning paradigms for network protocols. Electron. Proc. Theor. Comput. Sci. 371, 1–19 (2022). https://doi.org/10.4204/eptcs.371.1, FMAS/ASYDE 2022

  2. Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_1

    Chapter  Google Scholar 

  3. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed automata. In: TACAS 2020. LNCS, vol. 12078, pp. 444–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_25

    Chapter  Google Scholar 

  4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. C-21(6), 592–597 (1972). https://doi.org/10.1109/TC.1972.5009015

  6. Busany, N., Maoz, S., Yulazari, Y.: Size and accuracy in model inference. In: 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 887–898, November 2019. https://doi.org/10.1109/ASE.2019.00087, ASE 2019

  7. Cohen, H., Maoz, S.: The confidence in our k-tails. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp. 605–610. Association for Computing Machinery, New York, NY, USA, September 2014. https://doi.org/10.1145/2642937.2642944, ASE ’14

  8. Cornanguer, L., Largouät, C., Rozé, L., Termier, A.: TAG: learning timed automata from logs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, pp. 3949–3958 (2022). https://doi.org/10.1609/aaai.v36i4.20311

  9. Dierl, S., et al.: Learning symbolic timed models from concrete timed data - data and replication package (2023). https://doi.org/10.5281/zenodo.7766789

  10. Gabor, U.T., Dierl, S., Spinczyk, O.: Spectrum-based fault localization in deployed embedded systems with driver interaction models. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 97–112. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1_7

    Chapter  Google Scholar 

  11. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000). https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N

  12. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_29

    Chapter  Google Scholar 

  13. Henry, L., Jéron, T., Markey, N.: Active learning of timed automata with unobservable resets. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_9

    Chapter  MATH  Google Scholar 

  14. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8_5

    Chapter  Google Scholar 

  15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  17. Iversen, T.K., et al.: Model-checking real-time control programs: verifying lego mindstorms tm systems using uppaal. In: Proceedings 12th Euromicro Conference on Real-Time Systems. Euromicro RTS 2000, pp. 147–155. IEEE (2000)

    Google Scholar 

  18. Jeppu, N.Y., Melham, T., Kroening, D., O’Leary, J.: Learning concise models from long execution traces. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218613

  19. Maier, A.: Online passive learning of timed automata for cyber-physical production systems. In: IEEE International Conference on Industrial Informatics (INDIN 2014), pp. 60–66. IEEE (2014). https://doi.org/10.1109/INDIN.2014.6945484

  20. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed automata from sample executions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_38

    Chapter  Google Scholar 

  21. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular specifications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 46:1–46:21 (2018). https://doi.org/10.1145/3147660

  22. Pastore, F., Micucci, D., Guzman, M., Mariani, L.: TkT: automatic inference of timed and extended pushdown automata. IEEE Trans. Softw. Eng. 48(2), 617–636 (2022). https://doi.org/10.1109/TSE.2020.2998527

    Article  Google Scholar 

  23. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: automatic inference of timed automata. In: 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), pp. 401–411. IEEE, New York, March 2017. https://doi.org/10.1109/ICST.2017.43, ICST 2017

  24. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning timed automata from tests. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 216–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_13

    Chapter  MATH  Google Scholar 

  25. Tappler, M., Aichernig, B.K., Lorber, F.: Timed automata learning via SMT solving. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods. NFM 2022. LNCS, vol. 13260, pp. 489–507. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_26

  26. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning mealy machines with one timer. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 157–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_13

    Chapter  Google Scholar 

  27. Verwer, S., de Weerdt, M., Witteveen, C.: One-clock deterministic timed automata are efficiently identifiable in the limit. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 740–751. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00982-2_63

    Chapter  MATH  Google Scholar 

  28. Verwer, S., de Weerdt, M., Witteveen, C.: Efficiently identifying deterministic real-time automata from labeled data. Mach. Learn. 86(3), 295–333 (2012). https://doi.org/10.1007/s10994-011-5265-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the S40S Villum Investigator Grant (37819) from VILLUM FONDEN, the ERC Advanced Grant LASSO, DIREC, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 495857894 (STING).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Kauffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dierl, S. et al. (2023). Learning Symbolic Timed Models from Concrete Timed Data. In: Rozier, K.Y., Chaudhuri, S. (eds) NASA Formal Methods. NFM 2023. Lecture Notes in Computer Science, vol 13903. Springer, Cham. https://doi.org/10.1007/978-3-031-33170-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33170-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33169-5

  • Online ISBN: 978-3-031-33170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics