Abstract
In formal languages and automata theory, the magic number problem can be formulated as follows: for a given integer n, is it possible to find a number d in the range \([n,2^n]\) such that there is no minimal deterministic finite automaton with d states that can be simulated by a minimal nondeterministic finite automaton with exactly n states? If such a number d exists, it is called magic. In this paper, we consider the magic number problem in the framework of deterministic automata with output, which are known to characterize automatic sequences. More precisely, we investigate magic numbers for periodic sequences viewed as either automatic, regular, or constant-recursive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Proofs omitted due to space constraints may be found at https://arxiv.org/abs/2304.03268.
References
Alexeev, B.: Minimal DFA for testing divisibility. J. Comput. Syst. Sci. 69(2), 235–243 (2004). https://doi.org/10.1016/j.jcss.2004.02.001
Allouche, J.P., Shallit, J.O.: The ring of \(k\)-regular sequences. Theor. Comput. Sci. 98(2), 163–197 (1992). https://doi.org/10.1016/0304-3975(92)90001-V
Allouche, J.P., Shallit, J.O.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)
Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications, vol. 137. Cambridge University Press, Cambridge (2011)
Boigelot, B., Mainz, I., Marsault, V., Rigo, M.: An efficient algorithm to decide periodicity of \(b\)-recognisable sets using MSDF convention. In: ICALP 2017. LIPIcs, vol. 80, pp. 118:1–118:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.118
Bosma, W.: Complexity of periodic sequences (2019). Preprint available at https://www.math.ru.nl/~bosma/pubs/periodic.pdf
Büchi, R.J.: Weak second-order arithmetic and finite automata. Math. Log. Q. 6(1–6), 66–92 (1960). https://doi.org/10.1002/malq.19600060105
Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972). https://doi.org/10.1007/BF01706087
Everest, G., van der Poorten, A.J., Shparlinski, I.E., Ward, T.: Recurrence Sequences, Mathematical Surveys and Monographs, vol. 104. American Mathematical Society (2003)
Garrett, P.B.: Abstract Algebra. Chapman & Hall/CRC, Boca Raton (2008)
Geffert, V.: (Non)determinism and the size of one-way finite automata. In: DCFS 2005. Proceedings, pp. 23–37. Università degli Studi di Milano, Milan, Italy (2005)
Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205(11), 1652–1670 (2007). https://doi.org/10.1016/j.ic.2007.07.001
Hiller, H.: The crystallographic restriction in higher dimensions. Acta Crystallogr. A 41(6), 541–544 (1985). https://doi.org/10.1107/S0108767385001180
Holzer, M., Jakobi, S., Kutrib, M.: The magic number problem for subregular language families. Int. J. Found. Comput. Sci. 23(1), 115–131 (2012). https://doi.org/10.1142/S0129054112400084
Honkala, J.: A decision method for the recognizability of sets defined by number systems. RAIRO Theor. Inform. Appl. 20(4), 395–403 (1986). https://doi.org/10.1051/ita/1986200403951
Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to \(n\)-state NFAs. Theor. Comput. Sci. 237(1–2), 485–494 (2000). https://doi.org/10.1016/S0304-3975(00)00029-3
Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need \(2^n-\alpha \) deterministic states. Theor. Comput. Sci. 301(1–3), 451–462 (2003). https://doi.org/10.1016/S0304-3975(02)00891-5
Jirásková, G.: Deterministic blow-ups of minimal NFA’s. RAIRO Theor. Inf. Appl. 40(3), 485–499 (2006). https://doi.org/10.1051/ita:2006032
Jirásková, G.: On the state complexity of complements, stars, and reversals of regular languages. In: DLT 2008. Proceedings. LNCS, vol. 5257, pp. 431–442. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-85780-8_34
Jirásková, G.: Magic numbers and ternary alphabet. Int. J. Found. Comput. Sci. 22(2), 331–344 (2011). https://doi.org/10.1142/S0129054111008076
Koo, R.: A classification of matrices of finite order over \(\mathbb{C} \), \(\mathbb{R} \) and \(\mathbb{Q} \). Math. Mag. 76(2), 143–148 (2003)
Marsault, V.: An efficient algorithm to decide periodicity of \(b\)-recognisable sets using LSDF convention. Log. Methods Comput. Sci. 15(3) (2019). https://doi.org/10.23638/LMCS-15(3:8)2019
Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: 12th Annual Symposium on Switching and Automata Theory, East Lansing, Michigan, USA, 13–15 October 1971, pp. 188–191. IEEE Computer Society (1971). https://doi.org/10.1109/SWAT.1971.11
Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In: RP 2012. LNCS, vol. 7550, pp. 21–28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33512-9_3
Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://oeis.org
Sutner, K.: Divisibility and state complexity. Mathematica J. 11(3), 430–445 (2009). https://doi.org/10.3888/tmj.11.3-8
Sutner, K., Tetruashvili, S.: Inferring automatic sequences (2012). https://www.cs.cmu.edu/~sutner/papers/auto-seq.pdf
Zantema, H., Bosma, W.: Complexity of automatic sequences. Inf. Comput. 288, 104710 (2022). https://doi.org/10.1016/j.ic.2021.104710. Special Issue: Selected Papers of the 14th International Conference on Language and Automata Theory and Applications, LATA 2020
Acknowledgments
Savinien Kreczman and Manon Stipulanti are supported by the FNRS Research grants 1.A.789.23F and 1.B.397.20F respectively.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kreczman, S., Prigioniero, L., Rowland, E., Stipulanti, M. (2023). Magic Numbers in Periodic Sequences. In: Frid, A., Mercaş, R. (eds) Combinatorics on Words. WORDS 2023. Lecture Notes in Computer Science, vol 13899. Springer, Cham. https://doi.org/10.1007/978-3-031-33180-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-33180-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33179-4
Online ISBN: 978-3-031-33180-0
eBook Packages: Computer ScienceComputer Science (R0)